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Frequency response of cantilever beams immersed in viscous fluids
with applications to the atomic force microscope

John Elie Sadera)

Department of Mathematics and Statistics, University of Melbourne, Parkville, 3052, Victoria, Australia

~Received 30 December 1997; accepted for publication 30 March 1998!

The vibrational characteristics of a cantilever beam are well known to strongly depend on the fluid
in which the beam is immersed. In this paper, we present a detailed theoretical analysis of the
frequency response of a cantilever beam, that is immersed in a viscous fluid and excited by an
arbitrary driving force. Due to its practical importance in application to the atomic force microscope
~AFM!, we consider in detail the special case of a cantilever beam that is excited by a thermal
driving force. This will incorporate the presentation of explicit analytical formulae and numerical
results, which will be of value to the users and designers of AFM cantilever beams. ©1998
American Institute of Physics.@S0021-8979~98!03213-7#
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I. INTRODUCTION

It is well known that the frequency response of an elas
beam, due to an external driving force, is strongly depend
on the fluid in which it is immersed.1–25 In the absence of the
fluid ~i.e., in vacuum!, analysis of the natural resonant fr
quencies of the beam is routine, and can be solved u
simple analytical techniques in many cases of pract
interest.26 In contrast, the calculation of the frequency r
sponse of an elastic beam immersed in a viscous fluid p
a formidable challenge, and to date neither an analytical
numerical solution to the problem, which rigorously a
counts for the effects of viscosity, has appeared in the lite
ture. At this stage we must emphasize that numerous th
retical studies have been carried out with the assumption
the fluid is inviscid in nature~see Refs. 1, 2, 4, 7–11, 15, 2
24!, a justifiable approach in many cases of practical inter
as we shall discuss. However, for situations where struct
and radiation damping are negligible in comparison to dis
pative viscous effects in the fluid,27 these approaches ar
clearly incapable of giving any information about the to
frequency response of the beam, and consequently only
dicate the positions of the resonance peaks. Furtherm
these approaches can lead to significant errors in the p
tions of the resonance peaks, depending on the dimensio
the beam, as we shall discuss in detail. This is particula
true for cantilever beams used in the atomic force mic
scope~AFM!. We now note that to our knowledge the on
model that includes the effects of viscosity is the heuris
approach of approximating the beam by a sphere.14,16,21

Clearly, such an approach is unsatisfactory, since it does
rigorously account for the true geometry of the beam. The
fore, it is highly desirable to have a rigorous theoretic
model that accurately accounts for viscous effects in
fluid.

In this article, we present a general theoretical model
the frequency response of a cantilever beam of arbitr
cross section, which is excited by an arbitrary driving for

a!Electronic mail: elie@maths.mu.oz.au
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and immersed in a viscous fluid of arbitrary density and v
cosity. We emphasize that the fundamental restrictions
the analysis are that the amplitude of vibration must
small, the fluid must be incompressible, and the length of
beam must greatly exceed its nominal width, as we sh
discuss in detail. The formulation for a general cross sec
is then made possible by the specification of a ‘‘hydrod
namic function’’ which accounts for the geometry of th
cross section of the beam. Depending on the cross sectio
the beam, this hydrodynamic function can be calculated a
lytically or numerically, as we shall discuss. Since bea
that are rectangular or circular in cross section are of con
erable practical interest in many applications~e.g., see Refs
2–6, 9, 12, 13, 15, 20, 28, 29!, we shall give explicit ana-
lytical formulae for the hydrodynamic functions in bot
these cases.

Knowledge and understanding of the frequency spe
of cantilever beams excited by a thermal driving force is
fundamental practical importance in application to t
AFM.18,30,31However, despite the significant amount of e
perimental work that has been carried out on t
problem,14,18,19,21,23a theoretical model capable of predictin
the observed spectra has hitherto remained elusive. At
stage, we note that a theoretical study of the thermal spe
of AFM cantilever beams recently appeared in t
literature.31 However, the model presented in Ref. 31 a
counts for the hydrodynamic loading by assuming that o
dissipative effects are present in the fluid, which are sub
quently modeled in a simplistic fashion that involves an u
known fitting parameter. This fitting parameter is then calc
lated from knowledge of the quality factor of the frequen
response, which is measured experimentally. Therefore,
clear that the model presented in Ref. 31 cannot be use
give a priori predictions of the frequency spectra. In co
trast, the present model rigorously accounts for both diss
tive and inertial effects in the fluid, and is therefore capa
of making detailed calculations of the thermal frequen
spectra of AFM cantilever beams of arbitrary dimensio
immersed in arbitrary viscous fluids. Using the present t
oretical model, the frequency response is determined in aa
© 1998 American Institute of Physics
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priori manner from the material and geometric properties
the beam and the density and viscosity of the fluid.

At this stage we note that in many experimental a
theoretical treatments to date it has been assumed that i
neighborhood of a resonance peak the thermal freque
spectrum of a cantilever beam is well approximated by t
of a simple harmonic oscillator~SHO!.14,18,32 Using the
present theoretical model, we rigorously show that this
pothesis is only valid in the case where dissipative effect
the fluid can be considered to be small. If this latter condit
is not satisfied, however, then such an analogy is not p
sible. Consequently, we give explicit analytical formulae
the quality factor and resonant frequency of the freque
response in the case where dissipative effects in the fluid
small but finite, results which to date have remained elus
despite a considerable amount of research activity.5,16,21,31

We also present detailed theoretical results for the ther
frequency spectra of cantilever beams immersed in gases
fluids of arbitrary properties, which will be of significan
practical value to the users and designers of AFM cantile
beams. Finally, we note that a comparison and assessme
the present theoretical model with detailed experimental
sults shall be presented in Ref. 33.

II. PRELIMINARY DISCUSSION

We begin by discussing the general assumptions and
proximations implemented in the present theoretical mo
A schematic depiction of a cantilever beam of arbitrary cr
section is given in Fig. 1, and it is assumed that the be
satisfies the following criterion:

~1! The cross section of the beam is uniform over its en
length;

~2! The length of the beamL greatly exceeds its nomina
width b; see Fig. 1;

~3! The beam is an isotropic linearly elastic solid and int
nal frictional effects are negligible;

~4! The amplitude of vibration of the beam is far small
than any length scale in the beam geometry.34

Furthermore, we shall neglect all torsional effects in t
beam and only consider the flexural modes of vibration.

FIG. 1. Figure of cantilever beam with uniform arbitrary cross sect
showing lengthL, nominal widthb and coordinate system. The origin of th
coordinate system is at the center of mass of the cross section of the b
at its clamped end.
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particular, we shall consider modes whose motion is stric
in the z-direction; see Fig. 1. We emphasize that the abo
stated assumptions and restrictions are satisfied in many
ations of practical interest, including cantilever beams u
in the AFM.

Since the amplitude of vibration is small, it then follow
that all nonlinear convective inertial effects in the fluid c
be neglected, and the hydrodynamic loading on the be
will be a linear function of its displacement. Also, it is
direct consequence of criterion~2! above, that the velocity
field in the fluid will vary slowly along the length of the
beam in comparison to chordwise variations across its wid
This indicates that the dominant length scale in the hydro
namic flow is the nominal widthb. It then follows that the
velocity field at any point along the beam is well approx
mated by that of an infinitely long rigid beam executin
transverse oscillations with the same amplitude. At t
stage, we note that this approximation is implemented in
derivation of the well-known inviscid result for a rectangul
cantilever beam due to Chu,1 for which good accuracy ha
been demonstrated in comparison to experimen
measurements2

vfluid

vvac
5S 11

prb

4rch
D 21/2

, ~1!

wherevfluid andvvac are the resonant frequencies in vacuu
and fluid, respectively,rc is the density of the beam,b andh
are the width and thickness of the beam, andr is the density
of the fluid.

The fluid in which the cantilever beam is immersed
also assumed to be incompressible in nature. This assu
tion is justifiable in many cases of practical interest, since
is typically found that the wavelength of vibration great
exceeds the dominant length scale in the flowb, which in
turn is much larger than the amplitude of vibration.35,36 The
assumption of incompressibility also holds for gases, p
vided the above conditions are satisfied and the domin
length scale in the flowb greatly exceeds the mean free pa
of the gas. If this latter constraint were not satisfied,
treatment of the gas as a continuum would not be justifi
We note that these constraints are satisfied in most case
practical interest but situations do arise, particularly at l
gas pressures where the latter constraint is violated.

As discussed above, the inviscid fluid model of Chu1

Eq. ~1!, can and has been successfully used to predict
resonant frequencies of cantilever beams of rectangular c
section immersed in viscous fluids. We now examine
validity of approximating a viscous fluid by an inviscid fluid
as the dimensions of the beam are varied. Since the domi
length scale in the flow is the nominal widthb, it then fol-
lows from the above discussion that the appropriate R
nolds number Re for flow37 is given by

Re5
rvb2

4h
, ~2!

where r and h are the density and viscosity of the fluid
respectively, whereasv is a characteristic radial frequency o
the vibration. Clearly, in the limit as Re→` the fluid can be
considered to be inviscid in nature, and that for practi

m,
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cases where Re@1 the inviscid fluid model is applicable
However, if we approximatev by the resonant frequency o
the cantilever beam in vacuum, it becomes evident tha
reduction in the dimensions of the beam will also result in
reduction in Re; this shall be discussed in detail in Sec.
Correspondingly, viscous effects in the fluid become incre
ingly important as the dimensions of the beam are reduc
For AFM cantilever beams, it is found that Re;O~1!,17

which indicates that the inviscid fluid model is not app
cable, and if used will result in significant errors, as w
demonstrated in Ref. 17. Furthermore, we note that by c
struction the inviscid fluid model Eq.~1! gives no informa-
tion about the frequency spectrum but only indicates the
sition of the resonance peak. In this paper, we rigorou
include the effects of viscosity and consequently present
sults for the total frequency spectrum of the cantilever be
that are valid for all beam dimensions.

III. THEORY

A. General theory

In this section we present the general theory for the
namic deflection of a cantilever beam immersed in a visc
fluid and excited by an arbitrary external driving force. A
discussed above, the theory to be presented is applicab
beams of arbitrary cross section, that are uniform along t
entire length. All other restrictions and assumptions are
discussed in the previous section.

To begin we examine the governing equation for t
dynamic deflection functionw(x,t) of the beam26

EI
]4w~x,t !

]x4 1m
]2w~x,t !

]t2 5F~x,t !, ~3!

whereE is Young’s modulus,I is the moment of inertial of
the beam,m is the mass per unit length of the beam,F is the
external applied force per unit length,x is the spatial coor-
dinate along the length of the beam, andt is time. The
boundary conditions for Eq.~3! are the usual clamped an
free end conditions

Fw~x,t !5
]w~x,t !

]x G
x50

5F]2w~x,t !

]x2 5
]3w~x,t !

]x3 G
x5L

,

50, ~4!

whereL is the length of the beam~see Fig. 1!. We now scale
the spatial variablex with the length of the beamL and take
the Fourier transform of Eq.~3! to obtain

EI

L4

d4Ŵ~xuv!

dx4 2mv2Ŵ~xuv!5F̂~xuv!, ~5!

where

X̂5E
2`

`

Xe2 ivtdt ~6!

for any function of timeX. For simplicity of notation, the
spatial variablex in Eq. ~5! refers to its scaled quantity; thi
convention shall be applied henceforth. We note that in c
trast to Eq.~3!, Eq. ~5! is an ordinary differential equation in
a
a
.
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the scaled spatial variablex, and is parametric in the radia
frequency variablev. Since Eq.~5! is obtained by taking the
Fourier transform of Eq.~3!, it then follows that the bound-
ary conditions forŴ(xuv) are identical to those forw(x,t)
given in Eq.~4!, with all partial derivatives replaced by ful
derivatives and with the spatial variable replaced by
scaled quantity.

For a cantilever beam moving in a fluid, the extern
applied loadF̂(xuv) can be separated into two contribution

F̂~xuv!5F̂hydro~xuv!1F̂drive~xuv!. ~7!

The first component in Eq.~7! is a hydrodynamic loading
componentF̂hydro(xuv) due to the motion of the fluid aroun
the beam, whereas the second term is a driving fo
F̂drive(xuv) that excites the beam. To proceed with the ana
sis, the general form ofF̂hydro(xuv) is required. We therefore
examine the Fourier transformed equations of motion for
fluid

“–û50, 2“ P̂1h¹2û52 irvû, ~8!

where û is the velocity field,P̂ is the pressure,r is the
density of the fluid, andh its viscosity. Note that the nonlin
ear convective inertial term is neglected in Eq.~8!, for rea-
sons discussed in the preceding section.

It is evident from Eq.~8! and the discussion given in
Sec. II that the general form ofF̂hydro(xuv) is given by

F̂hydro~xuv!5
p

4
rv2b2G~v!Ŵ~xuv!, ~9!

where the ‘‘hydrodynamic function’’G~v! is dimensionless
and is obtained from the solution of Eq.~8! for a rigid beam,
with identical cross section to that of the cantilever bea
undergoing transverse oscillatory motion. The constantb in
Eq. ~9! is the dominant length scale in the hydrodynam
flow, as discussed above, which for a circular cylinder is
diameter, whereas for a rectangular beam is its width.
shall examine the explicit form of the hydrodynamic fun
tion for these two cases in Sec. III B.

Substituting Eq.~9! into ~5! and rearranging we find

d4Ŵ~xuv!

dx4 2
mv2L4

EI S 11
prb2

4m
G~v! D Ŵ~xuv!

5 ŝ~xuv!, ~10!

where

ŝ~xuv!5
F̂drive~xuv!L4

EI
. ~11!

The elastic properties of the cantilever beam can be imp
itly removed from Eq.~10! by noting that the fundamenta
radial resonant frequency of the beam in vacuum,vvac,1, is
given by

vvac,15
C1

2

L2 AEI

m
, ~12!

whereC151.875104... is the smallest positive root of

11cosCn coshCn50, ~13!
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wheren51,2,3,... . Substituting Eq.~12! into ~10! then gives

d4Ŵ~xuv!

dx4 2B4~v!Ŵ~xuv!5 ŝ~xuv!, ~14!

where

B~v!5C1A v

vvac,1
S 11

prb2

4m
G~v! D 1/4

. ~15!

Sinceŝ(xuv) is taken to be arbitrary in this general fo
mulation, it is convenient to express the solution of Eq.~14!
in integral form, using the theory of Green’s functions.38 The
appropriate Green’s functionG(x,x8uv) for Eq. ~14! satis-
fies

]4G~x,x8uv!

]x4 2B4~v!G~x,x8uv!5d~x2x8!, ~16!

where d(x2x8) is the Dirac delta function. The boundar
conditions for Eq.~16! are identical to those presented
Eqs.~4!. The solution of Eq.~16! for G(x,x8uv) is given in
Eq. ~A4! of the Appendix A. From Eqs.~4!, ~14!, and~16! it
can then be easily shown38 that the general solution to Eq
~14! is given by

Ŵ~xuv!5E
0

1

G~x,x8uv!ŝ~x8uv!dx8. ~17!

Equation~17! is the result we seek and gives the deflect
function Ŵ(xuv) of the cantilever beam immersed in a vi
cous fluid as a function of an arbitrary normalized exter
driving forceŝ(xuv). If the deflection functionw(x,t) in the
time domain were required, then it could be obtained
taking the inverse Fourier transform of Eq.~17!. However,
this shall not be implemented in the present work, since
are primarily interested in the frequency response of the c
tilever beam.

B. Hydrodynamic function G„v… for circular and
rectangular beams

We now present analytical expressions for the hydro
namic functionsG~v! of beams that are circular and recta
gular in cross section. For the rectangular cross section,
assumed that the widthb of the beam greatly exceeds i
thicknessh ~see Fig. 2!. As noted above,G~v! is obtained by
considering the rigid transverse oscillations of an infinite
long beam whose cross section is identical to that of
cantilever beam in question.

For a beam that is circular in cross section, the ex
analytical result forG~v! is well known,39,40 and is given by

Gcirc~v!511
4i K 1~2 iAi Re!

Ai Re K0~2 iAi Re!
, ~18!

where Re5rvb2/(4h), as defined in Eq.~2!, whereasb is the
diameter of the cylinder and corresponds to the domin
length scale in the hydrodynamic flow, as discussed ab
The subscript circ indicates that the solution refers to a
cular cylinder. The functionsK0 andK1 are modified Besse
functions of the third kind.41
l
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In contrast, the formulation of an exact analytical so
tion to G~v! for a beam that is rectangular in cross secti
poses a formidable challenge, and to our knowledge no s
solution has appeared in the literature. However, the form
lation can be greatly simplified by noting from the outset th
the hydrodynamic functionG~v! of a rectangular beam o
finite thickness is well approximated by that of an infinite
thin beam, provided its widthb greatly exceeds its thicknes
h ~see Fig. 2!. An exact analytical solution to the latter prob
lem was derived by Kanwal,42 who formally expanded the
governing equation for the stream function in elliptic coo
dinates, and consequently obtained a solution in terms o
infinite series in Mathieu functions.41 Unfortunately, the re-
sulting formulation is complicated and requires a significa
amount of numerical computation. Therefore, we do n
implement that solution, but instead refer to the more rec
numerical and asymptotic investigations of Tuck,43 who
demonstrated that the hydrodynamic functions for a circu
cylinder and an infinitely thin rectangular beam are appro
mately identical~deviations between the results never exce
15% over the range 0.1<Re<1000!.43 Furthermore, from
Appendix 1 of Ref. 43 it is evident that the hydrodynam
functions for a circular cylinder and a rectangular beam p
sess the same asymptotic forms in the limits as Re→0 and
Re→`, namely,

G~v!5H 1 :Re→`

24i

Re ln~2 iAi Re!
:Re→0

. ~19!

Consequently, it is a simple matter to formulate an appro
mate empirical correction function for Eq.~18! by interpo-
lating the ratio of the results for the rectangular beam~ob-
tained using the numerical procedure given in Ref. 43! with
the results of Eq.~18!. The hydrodynamic function for the
rectangular beamG rect(v) can then be expressed as

G rect~v!5V~v!Gcirc~v!, ~20!

whereV~v! is the correction function, which shall now b
evaluated. To perform the abovementioned interpolati
V~v! is expressed as a rational function in log10 Re, which
satisfies the asymptotic conditionsV~v!→1 as Re→0 and
Re→`. The unknown coefficients in the rational function a

FIG. 2. Figure of rectangular beam showing dimensions. Thickness of b
is h. The origin of the coordinate system is at the center of mass of the c
section of the beam, at its clamped end.
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then evaluated by performing a nonlinear least-square
with the numerical data over the range ReP@1026,104#. This
procedure results in the following expressions for the r
and imaginary parts ofV~v!,

V r~v!5~0.9132420.48274t10.46842t220.12886t3

10.044055t420.0035117t510.00069085t6!

3~120.56964t10.48690t220.13444t3

10.045155t420.0035862t5

10.00069085t6!21, ~21a!

V i~v!5~20.02413420.029256t10.016294t2

20.00010961t310.000064577t4

20.000044510t5!~120.59702t10.55182t2

20.18357t310.079156t420.014369t5

10.0028361t6!21, ~21b!

t5 log10 Re, ~22!

whereV(v)5V r(v)1 iV i(v). We emphasize that the re
sulting expression forG rect(v), Eq. ~20!, is approximate in
nature. Nonetheless, it is accurate to within 0.1% over
entire range ReP@1026,104# for both real and imaginary
parts, and possesses the correct asymptotic forms as R→0
and Re→`. In the absence of any simple exact analytic
formula for the hydrodynamic function of an infinitely thi
rectangular beam, we use Eq.~20! in our present formula-
tion.

Finally, we note that the hydrodynamic functionG~v!
for a cantilever beam of arbitrary cross section can be
merically evaluated using the formulation given in Ref. 4

C. Frequency response due to a thermal driving force

In this section, we apply the present formulation to t
analysis of the frequency response of a cantilever beam
is excited thermally, i.e., by Brownian motion of the mo
ecules in the surrounding fluid. Any dissipative effects due
internal frictional losses in the beam are assumed to be
ligible in comparison to those exhibited by the fluid. Sin
these conditions are typically satisfied in AFM cantilev
beams,5,28,32 the results to be presented in this section
rectly give the thermal noise spectra of these cantilevers

Since the cantilever beam is excited by Brownian mot
of the molecules in the fluid, it is clear that the extern
driving force being applied to the beam is uncorrelated
position and is stochastic in nature. It then directly follow
that the Fourier transform of this driving forceF̂drive(xuv) is
independent of positionx along the beam, i.e.,

F̂drive~xuv!5F̂drive~v!. ~23!

At this stage we note that the expectation value of the po
tial energy for each mode of the beam must be identic
equal to the thermal energy 1/2kBT, where kB is Boltz-
mann’s constant andT is absolute temperature. Since this
the case, it then directly follows that stochastic forces ex
fit
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n
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t-

ing different modes of the beam also differ in magnitude.
evaluate the magnitudes of each of these driving forces,
modes of the damped cantilever beam must be decomp
into the modes of the undamped beam, since any dam
will couple all modes. The undamped modes of a cantile
beam are given by

fn~x!5~cosCnx2coshCnx!1
cosCn1coshCn

sin Cn1sinh Cn

3~sinh Cnx2sin Cnx!, ~24!

whereCn is a solution to Eq.~13!.
To decompose the deflection function of the damp

cantilever beam into the modes of the undamped beam
simply use the properties that~i! the modesfn(x) form an
orthonormal basis set and~ii ! each mode is excited by
stochastic driving force whose magnitude is dictated by
above energy criterion. It then follows~see Appendix B! that
the deflection function of the cantilever beamŴ(xuv) can be
expressed as

Ŵ~xuv!5 (
n51

`

F̂n~v!an~v!fn~x!, ~25!

where

an~v!5
2 sin Cn tan Cn

Cn~Cn
42B4~v!!~sin Cn1sinh Cn!

, ~26!

uF̂n~v!us
25

3pkBT

kCn
4*0

`uan~v8!u2dv8
, ~27!

where the subscripts refers to the spectral density,B(v) is
defined in Eq.~15!, and the spring constant of the beamk is
given by

k5
3EI

L3 . ~28!

Substituting Eq.~27! into ~25! and noting that all modes
are uncorrelated, we obtain the required results

uŴ~xuv!us
25

3pkBT

k (
n51

` uan~v!u2

Cn
4*0

`uan~v8!u2dv8
fn

2~x!,

~29a!

U]Ŵ~xuv!

]x
U

s

2

5
3pkBT

k (
n51

` uan~v!u2

Cn
4*0

`uan~v8!u2dv8

3S dfn~x!

dx D 2

. ~29b!

For a detailed derivation of the above results, the reade
referred to Appendix B.

Equation ~29a! gives the frequency response of th
square of the magnitude of the displacement function at
positions along the beam, whereas Eq.~29b! gives the cor-
responding result for the slope. We note that in AFM app
cations, the magnitude of the slope is typically measu
@i.e., square root of Eq.~29b!#, since deflections of the beam
are often obtained using optical detection systems. Equat
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~29a! and ~29b! then give the relationship between the fr
quency spectra of the slope and displacement of the bea

Finally, we note that the total thermal noise present
each mode of the frequency response of the beam, whic
obtained by integrating Eq.~29a! or ~29b! over all frequen-
cies, is independent of the damping in the system. Con
quently, these results indicate that the analysis presente
Butt et al.,30 for the total thermal noise in all modes of a
undamped cantilever beam, also applies to cantilever be
with arbitrary damping.

D. Limit of small dissipative effects

We now examine the special case where dissipative
fects in the fluid can be considered to be small, i.e., when
magnitude of the imaginary component ofB(v) is far
smaller than that of its real component. In particular,
consider in detail the case of a cantilever beam excited b
thermal driving force, for which explicit general results f
the frequency response of the beam are given in the pre
ing section. As a result, we demonstrate that the freque
response of each mode of the beam is well approximated
that of a SHO in this limit, and consequently give explic
expressions for the resonant frequency and quality facto
the beam.

To begin, we note that in the limit of small dissipativ
effects, the modes of the beam are weakly coupled, and
sequently can be considered to be uncoupled, to leading
der. It then directly follows from Eq.~29a! that the magni-
tude ofŴ(xuv) in the neighborhood of the resonance pe
of moden is well approximated by

uŴ~xuv!us>U an~x!

Cn
42B4~v!

U, ~30!

where the functionan(x) is independent of frequencyv and
is given by

an~x!5H 12pkBT sin2 Cn tan2 Cn

kCn
6~sin Cn1sinh Cn!2*0

`uan~v8!u2dv8J
1/2

3fn~x!. ~31!

We note that Eq.~30! also holds for the frequency respon
of the slope of the beam Eq.~29b!, except that the function
an(x) is modified accordingly.

SinceB(v) has a small imaginary component in the
cases, it is clear from Eq.~30! that the resonance peaks w
be sharp yet finite it nature. Furthermore, from Eqs.~15! and
~18! it is evident that in the neighborhood of a resonan
peak, variations inB4(v) are dominated by anO(v2) con-
tribution, since the hydrodynamic functionG~v! varies
slowly asO(v21/2).39 Consequently, in the neighborhood
the resonance peak of moden, G~v! can be considered to b
constant, to leading order, and evaluated at the reson
frequency of the mode in the absence of dissipative effe
vR,n . Generalizing Eq.~15! to encompass all modes, w
then find that in the neighborhood of the resonance pea
moden, B(v) is well approximated by
.
n
is

e-
by

ms

f-
e

a

d-
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by

of

n-
r-

k

e
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of

B~v!>Bn~v!5CnA v

vvac,n
F11

prb2

4m
~G r~vR,n!

1 iG i~vR,n!!G1/4

, ~32!

wherevvac,n is the resonant frequency in vacuum of moden,
whereasG r andG i are the real and imaginary components
G~v!, respectively. From Eq.~32!, it is also clear that the
resonant frequency of moden in the absence of dissipativ
effects,vR,n , is given by

vR,n

vvac,n
5S 11

prb2

4m
G r~vR,n! D 21/2

. ~33!

Substituting Eq.~33! into ~32! and rearranging we find tha
Bn(v) becomes

Bn~v!5CnA v

vR,n
S 11

i

Qn
D 1/4

, ~34!

where

Qn5

4m

prb2 1G r~vR,n!

G i~vR,n!
. ~35!

Substituting Eq.~34! into ~30!, and noting that in the limit of
small dissipative effects,v>vR,n , we then find

UCn
4Ŵ~xuv!

an~x!vR,n
2 U

s

>F ~v22vR,n
2 !21

v2vR,n
2

Qn
2 G21/2

, ~36!

which is immediately identifiable as the frequency respo
of a SHO, with resonant frequencyvR,n and quality factor
Qn defined in Eqs.~33! and ~35!, respectively. We empha
size that the above conclusions and formulae for the reso
frequency and quality factor also hold for the frequency
sponse of the slope of the beam.

Finally we note that ifQn@1, it is clear from Eq.~34!
that dissipative effects in the fluid can be considered to
small, and the analogy with the SHO is valid. Conversely
Qn&O(1), then it is evident that such an analogy is n
justified. We shall examine these two cases in detail in
following sections.

IV. RESULTS AND DISCUSSION

Results shall now be be presented for the frequency
sponse of cantilever beams ofrectangularcross section tha
are excited thermally; see Fig. 2. Throughout, it is assum
that the widthb of the beam greatly exceeds its thicknessh;
the hydrodynamic functionG~v! is defined in Eq.~20!. This
case is considered in detail since it is of significant practi
importance in application to the AFM. We emphasize, ho
ever, that the general formulation presented is applicabl
beams of arbitrary cross section that are excited by arbit
driving forces.

To begin we note that the present theoretical model
proximates the hydrodynamic flow around a cantilever be
of large but finite aspect ratio by one that is infinite in asp
ratio. Therefore, it is clear that the model is applicable
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practice provided the mode numbern is not large~i.e., the
fundamental mode and its first few harmonics!. Conse-
quently, we shall primarily restrict our discussion to the fu
damental mode and in some instances examine the effec
the higher order modes.

We now define the scaling parameters for the probl
which will enable us to examine the frequency response
cantilever beams of arbitrary dimensions and material pr
erties, immersed in viscous fluids of arbitrary density a
viscosity. From Eqs.~15! and~18!, it is evident that the two
natural scaling parametersRe andT̄ for the problem are

Re5
rvvac,1b

2

4h
, T̄5

rb

rch
, ~37!

whereb is the width of the beam,h is its thickness,vvac,1 is
the radial resonant frequency of the fundamental mode of
beam in vacuum, and use has been made of the property
the mass per unit length of the beamm5rcbh. The param-
eter Re is a normalized Reynolds number that indicates
importance of viscous forces relative to inertial forces in
fluid. In contrast,T̄ is proportional to the ratio of the added
apparent mass due to inertial forces in the fluid~in the ab-
sence of viscous effects!, to the total mass of the beam. Fu
thermore, from Eqs.~12! and ~37! it is evident that the
parameterRe can be expressed explicitly in terms of t
geometric and material properties of the beam

Re5
C1

2

8)
hS b

L D 2 r

h
AE

rc
. ~38!

From Eqs.~37! and ~38! it is then clear that as the dimen
sions of the cantilever beam are ‘‘uniformly’’ reduced,T̄
remains unchanged whereas the Reynolds numberRe de-
creases linearly with the thicknessh. We shall examine the
implications of this decrease inRe with decreasing beam siz
~i.e., at constantT̄! in the following discussion.

Before presenting the results, we note that values oT̄
for beams immersed in gases and liquids typically differ
three orders of magnitude. This is a direct result of the d
ference in densities of gases relative to those of liquids
contrast, values forRe in gases and liquids differ by only on
order of magnitude, since the kinematic viscositiesh /r of
gases are typically one order of magnitude greater than th
of liquids. Consequently, we shall present separate result
gases and liquids that account for these differences.

In the limit of vanishing viscous effects,Re→`, we find
from Eqs.~19! and ~33! that the resonant frequencies of th
beam,vR,n are given explicitly in terms of its frequencies
vacuum,vvac,n , namely

vR,n

vvac,n
5S 11

prb

4rch
D 21/2

, ~39!

which is the well-known result due to Chu.1 We shall use Eq.
~39! as our benchmark to examine the effects of viscosity
the frequency response of cantilever beams immersed in
cous fluids.

In Fig. 3 we present results for the frequency respons
the slope at the end point (x51) of cantilever beams im
-
on

f
-

d

e
hat

e
e

y
-
n

se
for

n
is-

of

mersed in gases, for various values ofRe andT̄. Results are
given forRe;O(1) andT̄;O(1022), since these correspon
to values typically encountered in practice.18,23,28In all cases,
only the region in the neighborhood of the fundamental re
nance peak is shown. Also indicated is the quality factorQ1

of each resonance peak, as evaluated from Eq.~35!, and the
resonant frequency in the limit asRe→`, Eq. ~39!. It is
evident from Fig. 3 that for a given value ofT̄, decreasing
Re broadens and shifts the resonance peaks to lower freq
cies, a direct result of the increasing importance of visco
effects in the fluid. Furthermore, we note that the peak f
quencies are significantly lower than those predicted by
inviscid fluid model, Eq.~39!, for all cases considered. W
emphasize that the shift in the peak frequency is prima
accounted for by Eq.~33!, which neglects any dissipativ
effects, indicating that an increase in inertial forces is
primary cause. These results are consistent with recent
perimental results of AFM cantilevers,17 where it was dem-
onstrated that the shift in the resonant frequency fr
vacuum to air cannot be account for by the broadening of
resonance peak or by the inviscid fluid model, Eq.~39!. A
comparison of such experimental and theoretical results s
be deferred to Ref. 33, where a detailed study shall be

FIG. 3. Normalized thermal spectraH[uŴ8(1uv)us
2kvvac,1/(2kBT), Eq.

~29b!, of fundamental mode in neighborhood of peak. The8 refers to the
derivative with respect tox. Frequencies obtained using the inviscid formu
Eq. ~39! are indicated by vertical lines. Quality factorQ[Q1 , Eq. ~35!, is
indicated for each case.Re50.1 ~short-dashed line!; Re51 ~dashed line!;
Re510 ~solid line!. ~a! T̄50.005; ~b! T̄50.02.
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sented. The results in Fig. 3 also demonstrate that for a g
Re, an increase inT̄ has the effect of broadening and shiftin
the resonance peak to lower frequencies. Again, this
direct result of an increase in viscous effects in the fluid.

In Fig. 4 we give analogous results for cantilever bea
immersed in liquids. In this case, the frequency respo
includes the fundamental mode and its first harmonic
results are presented forT̄;O(10) and Re;O(10). These
values forRe andT̄ are chosen since they correspond
typical practical values for AFM cantilever beams immers
in liquids.14,18,23Note the dramatic shifting and broadenin
in the fundamental resonance peak compared to the re
presented in Fig. 3 for gases. It is also clear that signific
coupling occurs between the fundamental mode and its
harmonic. In some cases, the first harmonic resonance
has almost vanished and the peak in the fundamental mo
very close to zero frequency, due to the dramatic effect of
surrounding fluid. In all cases note that the peak frequen
of both the fundamental mode and its first harmonic occu
significantly lower frequencies than that predicted by the
viscid fluid model, Eq.~39!. Furthermore, we note that th
general trends regarding variations inRe andT̄ discussed
above also apply to the results presented in Fig. 4.

To quantify the general trends discussed above, in F

FIG. 4. Normalized thermal spectraH[uŴ8(1uv)us
2kvvac,1/(2kBT), Eq.

~29b!, displaying fundamental mode and its first harmonic. The8 refers to
the derivative with respect tox. Frequencies obtained using the invisc
formula Eq.~39! are indicated by vertical lines.Re51 ~short-dashed line!;
Re510 ~dashed line!; Re5100 ~solid line!. ~a! T̄55; ~b! T̄520.
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5 and 6 we present detailed results for the peak frequencyvp

and quality factorQ1 of the fundamental resonance, as
function of bothRe andT̄. The peak frequency is numer
cally calculated from the frequency response, Eq.~29b!,
whereas the quality factor is obtained directly from Eq.~35!.
Consequently, results presented forQ1 give quantitative in-
formation about the resonance peak providedQ1@1, since
the analogy with the frequency response of a SHO is o
valid in those cases. ForQ1&O(1), however, no such anal
ogy exists andQ1 only presents qualitative informatio
about the resonance peak. In particular, forQ1&O(1) one
can conclude that substantial broadening of the resona
peak is present, and that the modes are significantly coup
A reduction inQ1 will then result in further broadening o
the peak and an increased coupling of the modes. Finall
is interesting to note that a nonzero peak frequency is
served in all cases presented. Such behavior is not obse
in a SHO model, where the peak frequency is found to
identically zero for all quality factorsQ1<1/&. These re-
sults demonstrate that forQ1&O(1) the frequency respons
of a cantilever beam is not analogous to that of a SHO.
shall discuss this in more detail below.

Of particular interest in application to the AFM is th
peak energy of the fundamental resonance, since this is
served as noise in measurements made using the AFM.18 In

FIG. 5. Plot of peak frequencyvp of fundamental resonance relative t
frequency in vacuumvvac,1. ~a! T̄50.045 ~short-dashed line!; T̄50.015
~dashed line!; T̄50.005 ~solid line!. Results in the limitRe→` for T̄
50.045, 0.015, 0.005 are (12vp /vvac,1)50.0172, 0.00584, 0.00196, re
spectively.~b! T̄545 ~short-dashed line!; T̄515 ~dashed line!; T̄55 ~solid
line!; Results in the limitRe→` for T̄545, 15, 5 arevp /vvac,150.166,
0.280, 0.451, respectively.
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Fig. 7 we present the normalized peak energy of the fun
mental resonance for gases and liquids, respectively; al
sults were obtained numerically from Eq.~29a!. Note that in
all cases examined, the normalized peak energy displa
minimum at a critical valueRemin as the scaled Reynold
numberRe is varied for a givenT̄. Consequently, forRe
.Remin this peak energy increases monotonically with
creasingRe, whereas forRe,Remin it increases with de-
creasingRe. Upon comparison of Figs. 6~a!, 7~a! and Figs.
6~b!, 7~b! it is evident thatRemin also corresponds to th
value ofRe whereQ1;1, indicating that dissipative effect
can be considered to be small forRe.Remin and significant
for Re,Remin . Since the energy in any one mode is fixed
follows that if dissipative effects are small, then all mod
are weakly coupled and the normalized peak energy will
crease with decreasingRe, due to the redistribution of th
energy over a larger frequency range, as observed forRe
.Remin . However, if dissipative effects in the fluid are si
nificant, we find that the energy in the fundamental mo
redistributes itself towards lower frequencies~see Fig. 4!,
resulting in an increase in the peak energy for decreasingRe,
as observed forRe,Remin . We emphasize that this increas
in peak energy is not due to coupling of the higher ord
modes into the fundamental mode, since this always rem
minimal, as we shall demonstrate below. These results
indicate the possibility that the peak energy observed fo
given cantilever beam in air can in fact be smaller than t

FIG. 6. Plot of quality factorQ[Q1 , Eq. ~35!, for the fundamental mode
~a! T̄50.045 ~short-dashed line!; T̄50.015 ~dashed line!; T̄50.005 ~solid
line!. ~b! T̄545 ~short-dashed line!; T̄515 ~dashed line!; T̄55 ~solid line!;
a-
e-
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observed for the same cantilever immersed in water. T
phenomenon depends of course on the specific values oRe
andT̄ of the cantilever in question, as is evident from Fig.

Next we examine the influence of the surrounding flu
on the magnitude of the deflection functions of the mod
henceforth referred to as the mode shapes, at their peak
nant frequencies. In particular, we study the fundamen
mode and its first two harmonics, which correspond
modes 1, 2, and 3, respectively. In Fig. 8~a! we give the
mode shapes of the fundamental mode for various value
Re and for a fixed value ofT̄55. Also included in Fig. 8~a!
is the mode shape in the absence of viscous effe
(Re→`), which corresponds to no mode coupling. It is stri
ingly evident from Fig. 8~a! that the mode shape of the fun
damental mode at peak frequency is virtually unaffected
the presence of dissipative effects in the fluid, demonstra
that coupling of higher order modes into the fundamen
mode is insignificant. In contrast to the fundamental mo
we observe in Fig. 8~b! and 8~c! that its first and second
harmonics, modes 2 and 3, are both strongly affected by
presence of dissipative effects in the fluid. Unlike the mo
shapes in the absence of viscous effects, it is clear that
nodes in the deflection function are eliminated by the fluid
direct consequence of the strong coupling between mo
when dissipative effects in the fluid are significant.

In Sec. III D we rigorously showed that the frequen
response of a cantilever beam is identical to that of a SH

FIG. 7. Plot of normalized peak energy of fundamental resona
E[uŴ(1uv)us

2kvvac,1/(2kBT) as obtained from Eq.~29a!. ~a! T̄50.045
~short-dashed line!; T̄50.015 ~dashed line!; T̄50.005 ~solid line!. ~b! T̄

545 ~short-dashed line!; T̄515 ~dashed line!; T̄55 ~solid line!;
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provided dissipative effects in the fluid can be considered
be small, i.e.,Qn@1. We now demonstrate that this analo
is not valid for cases where dissipative effects are not sm
i.e., Qn&O(1). In Fig. 9 we present the frequency respon
obtained from Eq.~29a! for the case whereRe510, T̄515,
in the neighborhood of the fundamental mode, for wh
Q1>1. We found that for the values ofRe andT̄ chosen, the
frequency response over the entire frequency range indic
was virtually unaffected by the presence of the higher or
modes, in line with the results presented above. Also sho
in Fig. 9 is the frequency response of a SHO, whose reso
frequency and quality factor were chosen to ensure that
fit in the neighborhood of the true resonant peak was o
mal. This was achieved by performing a nonlinear lea

FIG. 8. Comparison of normalized mode shapesW̄
[uŴ(xuvp)us/uŴ(1uvp)us at the peak resonant frequencies of each mode
T̄55. Re51 ~short-dashed line!; Re510 ~dashed line!; Re→` ~solid line!.
~a! Mode 1; ~b! Mode 2; ~c! Mode 3.
o
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squares fit of the SHO model to the results of Eq.~29a!.
From Fig. 9 it is clear that the frequency response of a S
is a poor approximation to the true frequency response of
cantilever beam in this case.

V. CONCLUSIONS

We have presented a general theoretical model for
frequency response of a cantilever beam of arbitrary cr
section, immersed in a viscous fluid and excited by an a
trary driving force. The primary restrictions of this model a
that the length of the beam must greatly exceed its nom
width, the amplitude of vibration must be small, and the flu
must be incompressible in nature, properties that are satis
in many cases of practical interest. Unlike previous formu
tions, the present model accounts for the loading induced
the viscous fluid in a rigorous and quantitative fashion, th
enabling the frequency response to be determined in aa
priori manner from a knowledge of the material and geom
ric properties of the beam and the viscosity and density
the fluid. Since beams of circular or rectangular cross sec
are of significant importance in many applications, we a
presented explicit analytical formulae for their correspond
hydrodynamic functions, which will facilitate the calculatio
of their frequency responses.

The response of a cantilever beam to a thermal driv
force was considered in detail, due to its fundamental sign
cance in application to the AFM. It was found that the im
portance of viscous effects is strongly dependent on the
mensions of the beam; decreasing these dimensions enha
viscous effects, resulting in increased broadening and s
ing of the resonant peak from its value in vacuum. For
case where dissipative effects in the fluid can be conside
to be small, it was shown that the frequency response o
cantilever beam is well approximated by that of a SHO in
neighborhood of a resonant peak, for which we presen
explicit analytical expressions for the resonant frequency
quality factor. Finally, we presented detailed numerical
sults for the frequency response of rectangular cantile
beams of arbitrary dimensions, immersed in viscous fluids

r

FIG. 9. Comparison of amplitude frequency response of fundamental m
evaluated using Eq.~29a! ~solid line! to best fit of SHO response~dashed
line! for T̄515 andRe510. Peak amplitude of response is normalized
unity.
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arbitrary properties, which we believe will be of significa
practical value to the users and designers of AFM cantile
beams.
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APPENDIX A

In this appendix, we derive the Green’s functio
G(x,x8uv) for the deflection of a cantilever beam. To beg
we note that the governing equation forG(x,x8uv) is

]4G~x,x8uv!

]x4 2B4~v!G~x,x8uv!5d~x2x8!, ~A1!
e
o

m

r

o
f

,

f
s.
d
re
.

,

where d(x2x8) is the Dirac delta function. The boundar
conditions forG(x,x8uv) at the clamped and free ends a
identical to those ofŴ(xuv), namely

FG~x,x8uv!5
]G~x,x8uv!

]x G
x50

5F]2G~x,x8uv!

]x2 5
]3G~x,x8uv!

]x3 G
x51

50. ~A2!

In addition to these boundary conditions, it can be eas
shown, upon integration of Eq.~A1!, that G(x,x8uv) also
satisfies the following continuity conditions atx5x8,

lim
e→01

F]3G~x,x8uv!

]x3 G
x5x82e

x5x81e

51, ~A3!

with ]2G/]x2, ]G/]x, G all being continuous atx5x8.
The Green’s function is then constructed in an analog

manner to Ref. 38, by applying the above boundary and c
tinuity conditions to the general solution of the correspon
ing homogeneous equation@i.e., Eq.~A1! with the right hand
side replace by zero#, and making use of the symmetry prop
erty G(x,x8uv)5G(x8,xuv), from which we obtain
G~x,x8uv!5
1

4B3~v!@11cosB~v!coshB~v!#

¦

~@cosB~v!1coshB~v!#@coshB~v!x2cosB~v!x#
1@sin B~v!2sinh B~v!#@sinh B~v!x2sin B~v!x#)
3~sin~B~v!@x821# !1sinh~B~v!@x821# !!

1~@cosB~v!1coshB~v!#@sin B~v!x2sinh B~v!x#
2@sin B~v!1sinh B~v!#@cosB~v!x2coshB~v!x#
3~cos~B~v!@x821# !1cosh~B~v!@x821# !! :0<x<x8<1

~@cosB~v!1coshB~v!#@coshB~v!x82cosB~v!x8#
1@sin B~v!2sinh B~v!#@sinh B~v!x82sin B~v!x8#
3~sin~B~v!@x21# !1sinh~B~v!@x21# !!

1~@cosB~v!1coshB~v!#@sin B~v!x82sinh B~v!x8#
2@sin B~v!1sinh B~v!#@cosB~v!x82coshB~v!x8#
3~cos~B~v!@x21# !1cosh~B~v!@x21# !! :0<x8<x<1.

~A4!
m is
is-
or-
APPENDIX B

In this appendix, we give the formal derivation of th
results presented in Sec. III C for the frequency response
cantilever beam excited by a thermal driving force.

To begin, we note that the deflection functionŴ(xuv) of
a cantilever beam with arbitrary damping can be deco
posed into its individual undamped modesfn(x), defined in
Eq. ~24!, by using the property thatfn(x) form an orthonor-
mal basis set, i.e.,

E
0

1

f i~x!f j~x!dx5 H1
0

: i 5 j
:otherwise. ~B1!
f a

-

For the case of thermal excitation, each mode of the bea
driven by a stochastic force of different magnitude, as d
cussed in Sec. III C. Noting this, and using the above
thogonality property forfn(x), it then follows that the de-
flection functionŴ(xuv) can be expressed as

Ŵ~xuv!5 (
n51

`

F̂n~v!an~v!fn~x!, ~B2!

where

an~v!5E
0

1

Ŵ0~xuv!fn~x!dx, ~B3!
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whereF̂n(v) is the stochastic driving force for moden. The
function Ŵ0(xuv) is the ‘‘transfer function’’ of the cantile-
ver beam and is given by its deflection function due to
uniform impulse driving force applied along its entire leng
i.e., F̂drive(v)51. From Eq.~17! it then follows that

Ŵ0~xuv!5
1

2B4~v!@11cosB~v!coshB~v!#

3~2222 cosB~v!coshB~v!

1cos~B~v!x!1cosh~B~v!x!1cos~B~v!

3@12x# !coshB~v!1cosB~v!cosh~B~v!

3@12x# !2sin~B~v!@12x# !sinh B~v!

1sin B~v!sinh~B~v!@12x# !!, ~B4!

whereB(v) is defined in Eq.~15!. Substituting Eq.~B4! into
~B3! we obtain

an~v!5
2 sin Cn tan Cn

Cn~Cn
42B4~v!!~sin Cn1sinh Cn!

. ~B5!

To calculate the magnitude of each driving forceF̂n(v), we
use the property that the expectation value of the poten
energy for each mode is 1/2kBT. Consequently, we refer to
the general expression for the potential energyU(t) of the
beam,

U~ t !5
1

2

EI

L3 E
0

1S ]2w~x,t !

]x2 D 2

dx. ~B6!

From Eq.~B2!, it is clear thatw(x,t) is given by

w~x,t !5 (
n51

`

bn~ t !fn~x!, ~B7!

where bn(t) is the inverse Fourier transform o
F̂n(v)an(v). Sincefn(x) satisfy Eq.~B1!, and the bound-
ary conditions given in Eq.~4!, it then follows that the po-
tential energy of each modeUn(t) is given by

Un~ t !5
1

2

EI

L3 bn
2~ t !E

0

1S d2fn~x!

dx2 D 2

dx. ~B8!

From this expression and Eq.~24!, the expectation value o
the potential energy of each mode^Un(t)& can be directly
calculated and equated with 1/2kBT, from which we obtain

1
2 kBT5 1

6 kCn
4^bn

2~ t !&, ~B9!

wherek is the spring constant of the beam and is given b

k5
3EI

L3 . ~B10!

Since bn(t) is the inverse Fourier transform o
F̂n(v)an(v), it is then follows that

^bn
2~ t !&5

1

2p E
2`

`

uF̂n~v8!us
2uan~v8!u2dv8. ~B11!

Substituting Eq.~B11! into ~B9! and rearranging, we find
a
,

al

uF̂n~v!us
25

3pkBT

kCn
4*0

`uan~v8!u2dv8
. ~B12!

Finally, noting that all modes are uncorrelated, it follow
from Eqs.~B12! and ~B2! that the magnitude ofŴ(xuv) is
given by

uŴ~xuv!us
25

3pkBT

k (
n51

` uan~v!u2

Cn
4*0

`uan~v8!u2dv8
fn

2~x!,

~B13a!

whereas the magnitude of the slope ofŴ(xuv) is

U]Ŵ~xuv!

]x
U

s

2

5
3pkBT

k (
n51

` uan~v!u2

Cn
4*0

`uan~v8!u2dv8

3S dfn~x!

dx D 2

. ~B13b!

Equations~B13a! and ~B13b! are the required results.
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