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Frequency response of cantilever beams immersed in viscous fluids
with applications to the atomic force microscope
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The vibrational characteristics of a cantilever beam are well known to strongly depend on the fluid
in which the beam is immersed. In this paper, we present a detailed theoretical analysis of the
frequency response of a cantilever beam, that is immersed in a viscous fluid and excited by an
arbitrary driving force. Due to its practical importance in application to the atomic force microscope
(AFM), we consider in detail the special case of a cantilever beam that is excited by a thermal
driving force. This will incorporate the presentation of explicit analytical formulae and numerical
results, which will be of value to the users and designers of AFM cantilever beam4.99®
American Institute of Physic§S0021-8978)03213-7

I. INTRODUCTION and immersed in a viscous fluid of arbitrary density and vis-

) _cosity. We emphasize that the fundamental restrictions on
Itis well known that the frequency response of an elastiGhe analysis are that the amplitude of vibration must be

beam, due to an external driving force, is strongly dependenimg, the fluid must be incompressible, and the length of the
on the fluid in which it is immersed.=In the absence of the ;oo must greatly exceed its nominal width, as we shall
fluid (|..e., in vacuum, anaIyS|s_of the natural resonant fre_‘ discuss in detail. The formulation for a general cross section
quencies of the beam is routlpe, and can be solved Using then made possible by the specification of a “hydrody-
simple gmalyncal techniques in many cases of practical,ymic function” which accounts for the geometry of the
interest?® In contrast, the calculation of the frequency re- .qsg section of the beam. Depending on the cross section of
sponse of an elastic beam immersed in a viscous fluid Posgfe peam, this hydrodynamic function can be calculated ana-
a formidable challenge, and to date neither an analytical NOUsicaly or numerically, as we shall discuss. Since beams
numerical solution to the problem, which rigorously ac-ha¢ are rectangular or circular in cross section are of consid-

counts for the effects of viscosity, has appeared in the literag o po practical interest in many applicatidesg., see Refs.
ture. At this stage we must emphasize that numerous theg-_g 9 12 13 15 20. 28 p9we shall give explicit ana-

retical studies have been carried out with the assumption th%tical formulae for the hydrodynamic functions in both
the fluid is inviscid in naturésee Refs. 1, 2, 4, 7-11, 15, 22, {1ace cases.
24), a justifiable approach in many cases of practical interest, Knowledge and understanding of the frequency spectra

as we shall discuss. However, for situations where structurgls canjlever beams excited by a thermal driving force is of
and radiation damping are negligible in comparison to dissiz,ngamental practical importance in application to the
pative viscous effects in the flufd,these approaches are AFM. 18303 However, despite the significant amount of ex-

clearly incapable of giving any information about the tota perimental work that has been carried out on this

frequency response of the beam, and consequently only inSroblem418:1921.23 theoretical model capable of predicting

dicate the positions of the resonance peaks. Furthermorgye gpserved spectra has hitherto remained elusive. At this

these approaches can lead to significant errors in the positage; we note that a theoretical study of the thermal spectra
tions of the resonance peaks, depending on the dimensions gf "AEM  cantilever beams recently appeared in the

the beam, as we shall discuss in detail. This is particularlyiiarature3! However. the model presented in Ref. 31 ac-
true for cantilever beams used in the atomic force microynts for the hydrodynamic loading by assuming that only
Scope(AFM). We now note that to our knowledge the only issipative effects are present in the fluid, which are subse-
model that includes the effects of viscosity is the heu”St'Cquently modeled in a simplistic fashion that involves an un-
I 1 ’21 . . . . . .
approach of approximating the beam by a Splj'_é}é' known fitting parameter. This fitting parameter is then calcu-
(?Iearly, such an approach is unsatisfactory, since it does N@tioq from knowledge of the quality factor of the frequency
rigorously account for the true geometry of the beam. Theregogngnse which is measured experimentally. Therefore, it is
fore, it is highly desirable to have a rigorous theoreticalgjeay that the model presented in Ref. 31 cannot be used to
quel that accurately accounts for viscous effects in thegive a priori predictions of the frequency spectra. In con-
fluid. ) , , trast, the present model rigorously accounts for both dissipa-
In this article, we present a general theoretical model fot; e and inertial effects in the fluid, and is therefore capable
the frequency response of a cantilever beam of arbitrarys making detailed calculations of the thermal frequency
cross section, which is excited by an arbitrary driving force'spectra of AFM cantilever beams of arbitrary dimensions
immersed in arbitrary viscous fluids. Using the present the-
dElectronic mail: elie@maths.mu.oz.au oretical model, the frequency response is determined ia an
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particular, we shall consider modes whose motion is strictly
in the z-direction; see Fig. 1. We emphasize that the above
stated assumptions and restrictions are satisfied in many situ-
ations of practical interest, including cantilever beams used
in the AFM.

Since the amplitude of vibration is small, it then follows
that all nonlinear convective inertial effects in the fluid can
be neglected, and the hydrodynamic loading on the beam
will be a linear function of its displacement. Also, it is a
direct consequence of criterig2) above, that the velocity
field in the fluid will vary slowly along the length of the
beam in comparison to chordwise variations across its width.
This indicates that the dominant length scale in the hydrody-
FIG. 1. Figure of cantilever beam with uniform arbitrary cross section namic flow is the nominal width. It then follows that the
showi_ng length_, nqminal widthb and coordinate system. The_origin of the velocity field at any point along the beam is well approxi—
cogrdlnate system is at the center of mass of the cross section of the beanrhated by that of an infinitely Iong rigid beam executing
at its clamped end.

transverse oscillations with the same amplitude. At this

stage, we note that this approximation is implemented in the
priori manner from the material and geometric properties ofjerivation of the well-known inviscid result for a rectangular
the beam and the density and viscosity of the fluid. cantilever beam due to CHufor which good accuracy has

At this stage we note that in many experimental andbeen demonstrated in comparison to experimental
theoretical treatments to date it has been assumed that in theeasurements
neighborhood of a resonance peak the thermal frequency _1
spectrum of a cantilever beam is well approximated by that ~ ©fluid _ mpb (1)
of a simple harmonic oscillatofSHO).}#1832 Using the Wyac 4pch '
present theoretical model, we rigorously show that this hyyyhere w4 andw,,. are the resonant frequencies in vacuum
pothesis is only valid in the case where dissipative effects inynq fluid, respectivelyy, is the density of the bearb,andh
the fluid can be considered to be small. If this latter conditionyre the width and thickness of the beam, arid the density
is not satisfied, however, then such an analogy is not posss the fluid.
sible. Consequently, we give explicit analytical formulae for  The fluid in which the cantilever beam is immersed is
the quality factor and resonant frequency of the frequencyisg assumed to be incompressible in nature. This assump-
response in the case where dissipative effects in the fluid aigyp, is justifiable in many cases of practical interest, since it
small but finite, results which to date have remained elusivgs typically found that the wavelength of vibration greatly
despite a considerable amount of research actVity"*"  oyceeds the dominant length scale in the flowwhich in
We also present detailed theoretical results for the thermg|,r, js much larger than the amplitude of vibratfSri® The
frequency spectra of cantilever beams immersed in gases agdsymption of incompressibility also holds for gases, pro-
fluids of arbitrary properties, which will be of significant \;geq the above conditions are satisfied and the dominant
practical value to the users and designers of AFM cantilevefangth scale in the flow greatly exceeds the mean free path
beams. Finally, we note that a comparison and assessment §f the gas. If this latter constraint were not satisfied, the
the present theoretical model with detailed experimental regeatment of the gas as a continuum would not be justified.

sults shall be presented in Ref. 33. We note that these constraints are satisfied in most cases of
practical interest but situations do arise, particularly at low
IIl. PRELIMINARY DISCUSSION gas pressures where the latter constraint is violated.

We begin by discussing the general assumptions and ap- As discussed above, the inviscid fluid model of GhU,
proximations implemented in the present theoretical modelEd. (1), can and has been successfully used to predict the
A schematic depiction of a cantilever beam of arbitrary crosgesonant frequencies of cantilever beams of rectangular cross

section is gi\/en in F|g 1, and it is assumed that the bearﬁeCtion immersed in viscous fluids. We now examine the
satisfies the following criterion: validity of approximating a viscous fluid by an inviscid fluid,

) ) ] ) ~as the dimensions of the beam are varied. Since the dominant
(1) The cross section of the beam is uniform over its entquength scale in the flow is the nominal width it then fol-

length; _ ) lows from the above discussion that the appropriate Rey-
(2) The length of the bearh greatly exceeds its nominal ,i4s number Re for flod is given by

width b; see Fig. 1; )
(3) The beam is an isotropic linearly elastic solid and inter- pob
. L Re= ,
nal frictional effects are negligible; 4y
(4) The amplitude of vibration of the beam is far smaller
than any length scale in the beam geométry.

@

where p and » are the density and viscosity of the fluid,
respectively, whereas is a characteristic radial frequency of
Furthermore, we shall neglect all torsional effects in thethe vibration. Clearly, in the limit as Rex the fluid can be
beam and only consider the flexural modes of vibration. Inconsidered to be inviscid in nature, and that for practical
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cases where Rel the inviscid fluid model is applicable. the scaled spatial variable and is parametric in the radial
However, if we approximate by the resonant frequency of frequency variables. Since Eq.(5) is obtained by taking the
the cantilever beam in vacuum, it becomes evident that &ourier transform of Eq(3), it then follows that the bound-
reduction in the dimensions of the beam will also result in aary conditions fonN(x|w) are identical to those fow(x,t)
reduction in Re; this shall be discussed in detail in Sec. IVgiven in Eq.(4), with all partial derivatives replaced by full
Correspondingly, viscous effects in the fluid become increasderivatives and with the spatial variable replaced by its
ingly important as the dimensions of the beam are reducedcaled quantity.

For AFM cantilever beams, it is found that Re&(1)," For a cantilever beam moving in a fluid, the external
which indicates that the inviscid fluid model is not appli- applied load~ (x| w) can be separated into two contributions:
cable, and if used will result in significant errors, as was . - -

demonstrated in Ref. 17. Furthermore, we note that by con-  F(X[@)=FpygdX| @)+ F give(X| @). (7)

struction the inviscid fluid model Eq1) gives no informa-  pe first component in Eq7) is a hydrodynamic loading

tion about the frequency spectrum but only indicates the po(':omponenf:hydm(xm) due to the motion of the fluid around

sition of the resonance peak. In this paper, we rigorousl3fhe beam, whereas the second term is a driving force

include the effects of viscosity and consequently present rer:dr_ (x| ) that excites the beam. To proceed with the analy-
ive > '

sults for the total frequency spectrum of the cantilever beam, . .

that are valid for all beam dimensions. sis, th.e general fqrm FF ryard X| @) is requ_|red. We th.erefore
examine the Fourier transformed equations of motion for the
fluid

Ill. THEORY V-i=0, —VP+7V2i=—ipwl, ®)

A. General theory where U is the velocity fieId,IAD is the pressurep is the

In this section we present the general theory for the dydensity of the fluid, and; its viscosity. Note that the nonlin-
namic deflection of a cantilever beam immersed in a viscougar convective inertial term is neglected in E8), for rea-
fluid and excited by an arbitrary external driving force. As sons discussed in the preceding section.
discussed above, the theory to be presented is applicable to It is evident from Eq.(8) and the discussion given in
beams of arbitrary cross section, that are uniform along theigec. Il that the general form &f,yqoX|w) is given by
entire length. All other restrictions and assumptions are as
discussed i_n the previOl_Js section. _ _ ﬁhydro(x|w): f prbzr(w)\iv(x|w), )

To begin we examine the governing equation for the 4

. . . 6
dynamic deflection functiom/(x,t) of the bearf where the “hydrodynamic function'T(w) is dimensionless

a*W(x,t) FPW(X,t) and is obtained from the solution of E@) for a rigid beam,
od T T —FX, (3 with identical cross section to that of the cantilever beam,
undergoing transverse oscillatory motion. The conskairt
whereE is Young's modulus] is the moment of inertial of Eq. (9) is the dominant length scale in the hydrodynamic
the beamyu is the mass per unit length of the bedfnis the  flow, as discussed above, which for a circular cylinder is its
external applied force per unit lengtk,is the spatial coor-  diameter, whereas for a rectangular beam is its width. We

dinate along the length of the beam, ahds time. The shall examine the explicit form of the hydrodynamic func-
boundary conditions for Eq.3) are the usual clamped and tion for these two cases in Sec. Il B.

free end conditions Substituting Eq(9) into (5) and rearranging we find
AW(X,t) Pw(x,t)  Pw(x,t) d“W(x 2 4 b2 A
wix, )= —— % vl vend I o) # L T ) [Wida)
x=0 x=L dx El 4u
=0, 4 =5(X|w), (10)
wherelL is the length of the beaitsee Fig. L We now scale \yhere
the spatial variable with the length of the bearh and take R
the Fourier transform of Eq3) to obtain 3(xw) Farive(X| @) L* 11
)= e T
El dW(o) - ] El
LA g M@ W(x|w)=F(x|), ®)  The elastic properties of the cantilever beam can be implic-
itly removed from Eq.(10) by noting that the fundamental
where radial resonant frequency of the beam in vacuamy 1, is
- % _ given by
x=J Xe 'tdt (6) 2
o ¢ [El >
for any function of timeX. For simplicity of notation, the Ovact= 12 N7 (12

spatial variablex in Eq. (5) refers to its scaled quantity; this _ . .
convention shall be applied henceforth. We note that in con\-Nherecl 1.875104... is the smallest positive root of

trast to Eq.(3), Eq. (5) is an ordinary differential equation in 1+cosC, coshC,=0, (13
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wheren=1,2,3,... . Substituting Eq12) into (10) then gives

d“W(x| ) R X
—aF B*(w)W(X|w)=3(X|w), (14)
where
o prz 1/4
B(w)=C; o 1+ m F(w)) . (15

Sinces(x|w) is taken to be arbitrary in this general for-
mulation, it is convenient to express the solution of Edf)
in integral form, using the theory of Green’s functiclig he
appropriate Green’s functio®(x,x’|w) for Eq. (14) satis-
fies

FIG. 2. Figure of rectangular beam showing dimensions. Thickness of beam
is h. The origin of the coordinate system is at the center of mass of the cross

(94G(X X' | w) section of the beam, at its clamped end.
(9)’(4 —B*w)G(x,X'|w)=8(x—x"), (16)
where 5(x—x") is the Dirac delta function. The boundary In contrast, the formulation of an exact analytical solu-

conditions for Eq.(16) are identical to those presented in tion to I'(w) for a beam that is rectangular in cross section
Egs.(4). The solution of Eq(16) for G(x,x'|w) is given in  poses a formidable challenge, and to our knowledge no such
Eq. (A4) of the Appendix A. From Eqd4), (14), and(16) it solution has appeared in the literature. However, the formu-
can then be easily showhthat the general solution to Eq. |ation can be greatly simplified by noting from the outset that

(14) is given by the hydrodynamic functiof'(w) of a rectangular beam of
. 1 A finite thickness is well approximated by that of an infinitely
W(x|w)= fo G(X,X'|w)S(X'|w)dX'. (170 thin beam, provided its width greatly exceeds its thickness

h (see Fig. 2 An exact analytical solution to the latter prob-

Equation(17) is the result we seek and gives the deflectionlem was derived by Kanwdf who formally expanded the
function W(x|w) of the cantilever beam immersed in a vis- governing equation for the stream function in elliptic coor-
cous fluid as a function of an arbitrary normalized externatdinates, and consequently obtained a solution in terms of an
driving force%(x|w)‘ If the deflection functiow(x,t) in the infinite series in Mathieu functiorfsl.Unfortunately, the re-
time domain were required, then it could be obtained bysulting formulation is complicated and requires a significant
taking the inverse Fourier transform of E@.7). However, —amount of numerical computation. Therefore, we do not
this shall not be implemented in the present work, since wémplement that solution, but instead refer to the more recent
are primarily interested in the frequency response of the carumerical and asymptotic investigations of Tdékwho
tilever beam. demonstrated that the hydrodynamic functions for a circular
cylinder and an infinitely thin rectangular beam are approxi-
mately identicaldeviations between the results never exceed
15% over the range 0<IRe<1000.*® Furthermore, from
Appendix 1 of Ref. 43 it is evident that the hydrodynamic
functions for a circular cylinder and a rectangular beam pos-

We now present analytical expressions for the hydrodysess the same asymptotic forms in the limits as-Reand
namic functionsl'(w) of beams that are circular and rectan- Re—«, namely,
gular in cross section. For the rectangular cross section, it is

B. Hydrodynamic function I'(w) for circular and
rectangular beams

assumed that the width of the beam greatly exceeds its 1 _ ‘Re—ee
thicknessh (see Fig. 2 As noted above(w) is obtained by I'w)= —4i ‘Re—0" (19
considering the rigid transverse oscillations of an infinitely ReInN—i\i Re)

long beam whose cross section is identical to that of theC Vit imol f | .
cantilever beam in question. onsequently, it is a simple matter to formulate an approxi-

For a beam that is circular in cross section, the exacfnate empiric_al correction function for EQL8) by interpo-
analytical result fol(w) is well known®®4°and is given by ating the ratio of the results for the rectangular be@h-
tained using the numerical procedure given in Rej. wizh

4i K4(—i+i Re the results of Eq(18). The hydrodynamic function for the
Fere(w)=1+ — T ) (18)
TReKy(—ii R rectangular bear',..( w) can then be expressed as
0
1-‘recl((’-’):Q(a’)rcirc(‘l’): (20

where Re=pwb?(47), as defined in Eq(2), wheread is the
diameter of the cylinder and corresponds to the dominanivhere ()(w) is the correction function, which shall now be
length scale in the hydrodynamic flow, as discussed abovevaluated. To perform the abovementioned interpolation,
The subscript circ indicates that the solution refers to a cir{)(w) is expressed as a rational function in Jp&Re, which
cular cylinder. The functionk, andK; are modified Bessel satisfies the asymptotic conditiof¥(w)—1 as Re~0 and
functions of the third kind?! Re—x. The unknown coefficients in the rational function are
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then evaluated by performing a nonlinear least-squares fihg different modes of the beam also differ in magnitude. To

with the numerical data over the rangeda0 ®,10*]. This  evaluate the magnitudes of each of these driving forces, the
procedure results in the following expressions for the reamodes of the damped cantilever beam must be decomposed
and imaginary parts df)(w), into the modes of the undamped beam, since any damping

Q,(w)=(0.91324-0.48274+ 0.46842°— 0.12886" will couple all modes. The undamped modes of a cantilever
r - . . . .

beam are given by
+0.044055*—0.0035117°+ 0.00069085°)

cosC,,+coshC,
X(1—0.56964+0.486942—0.134443 $n(X)=(cosCpx—coshCpyx) + SinC,1sinhC,
+0.045155*—0.0035862° X (sinh C,x—sin C.x), (24)
+0.00069085°) 1, (218 whereC, is a solution to Eq(13).
Qi(@)=(—0.024134-0.029256+ 0.016294> To decompose the deflection function of the damped
! ' ' ' cantilever beam into the modes of the undamped beam, we
—0.0001096%>+ 0.000064577* simply use the properties thé the modesp,(x) form an

_ _ 5 orthonormal basis set an@) each mode is excited by a
0.000044516%)(1~0.59702+0.55182r stochastic driving force whose magnitude is dictated by the

—0.183573+0.079156%— 0.014369° above energy criterion. It then followsee Appendix Bthat
the deflection function of the cantilever be&l{x|w) can be

+0.002836%°) 1, (21D expressed as
7=logyo Re, (22) .
where Q(w)=Q(w)+iQ;(w). We emphasize that the re- W(X|‘”)=n§1 Fa(w) an(@) én(X), (29

sulting expression foF ¢(w), Eq. (20), is approximate in
nature. Nonetheless, it is accurate to within 0.1% over thavhere

entire range Re[10 6,10*] for both real and imaginary 2sinC. tanC
n n

parts, and possesses the correct asymptotic forms asORe —

/ ) an(w) =2 - - , (26)
and Re-x. In the absence of any simple exact analytical Cn(Ch—B%(w))(sinCp+sinh Cy)
formula for the hydrodynamic function of an infinitely thin 3mkaT
rectangular beam, we use E@O) in our present formula- ||‘:n(w)|§: — . B, — (27)
tion. kChfolan(")|*dw

Fmally_, we note that the_ hydrodynamic funct|d“r(w) where the subscripg refers to the spectral densitB(w) is
for a cantilever beam of arbitrary cross section can be nu-,

merically evaluated using the formulation given in Ref. 43. gievﬁer:]eg;n Eq(15), and the spring constant of the bearis

3ElI
C. Frequency response due to a thermal driving force k= 3 (28

In Fh's section, we apply the present forr_nulatmn to the Substituting Eq(27) into (25) and noting that all modes
analysis of the frequency response of a cantilever beam that . .
. : . : : are uncorrelated, we obtain the required results
is excited thermally, i.e., by Brownian motion of the mol-
ecules in the surrounding fluid. Any dissipative effects due to R , 3mkeT * | ()|
internal frictional losses in the beam are assumed to be neg- |W(x|w)|s= K E C4fw| (0)2d
ligible in comparison to those exhibited by the fluid. Since n=1 %nlol®*nl® @ (293
these conditions are typically satisfied in AFM cantilever

28,32 : . : i .

beams'a,' the results to' be presented in this sgctlon di- (9W(X|w)‘2 37kgT (@)
rectly give the thermal noise spectra of these cantilevers. X I 2 A7 NP

Since the cantilever beam is excited by Brownian motion =1 Cufolan(w”)|*dw
of the molecules in the fluid, it is clear that the external debn(x))2

.. . . . . n

driving force being applied to the beam is uncorrelated in ( dx )
position and is stochastic in nature. It then directly follows
that the Fourier transform of this driving for€eyc(x| ») is For a detailed derivation of the above results, the reader is
independent of positior along the beam, i.e., referred to Appendix B.

£ | )—IE A ) 23) Equation (299 gives the frequency response of the

drive(X| @) = F arive ). square of the magnitude of the displacement function at all

At this stage we note that the expectation value of the poterpositions along the beam, whereas E2Pb) gives the cor-
tial energy for each mode of the beam must be identicallyesponding result for the slope. We note that in AFM appli-
equal to the thermal energy X, where kg is Boltz-  cations, the magnitude of the slope is typically measured
mann’s constant and is absolute temperature. Since this is[i.e., square root of Eq29b)], since deflections of the beam
the case, it then directly follows that stochastic forces excitare often obtained using optical detection systems. Equations

- BA(x),

©

B

(29b)
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(299 and (29b) then give the relationship between the fre- » mpb?

quency spectra of the slope and displacement of the beam.  B(w)=Bp(®)=Cq\/—— |1+ ——— (I''(wgrn)
Finally, we note that the total thermal noise present in vaen

each mode of the frequency response of the beam, which is ] va

obtained by integrating Eq293 or (29b) over all frequen- +ili(wrn))| (32)

cies, is independent of the damping in the system. Conse-

quently, these results indicate that the analysis presented By€r€®vacn is the resonant frequency in vacuum of made
Butt et al,® for the total thermal noise in all modes of an Wheread', andl’; are the real and imaginary components of

undamped cantilever beam, also applies to cantilever beanid®), respectively. From Eq(32), it is also clear that the

with arbitrary damping. resonant frequency of modein the absence of dissipative
effects,wr , is given by
® T b2 —-1/2
N o Rn _ 1+”—r,(an)) . (33
D. Limit of small dissipative effects Wyacn 4u '

We now examine the special case where dissipative efSubstituting Eq(33) into (32) and rearranging we find that
fects in the fluid can be considered to be small, i.e., when th8,(w) becomes
magnitude of the imaginary component &{w) is far °

n(w)=C \[

1/4

1+ Q_n , (39

smaller than that of its real component. In particular, we
consider in detail the case of a cantilever beam excited by a
thermal driving force, for which explicit general results for where
the frequency response of the beam are given in the preced-

ing section. As a result, we demonstrate that the frequency Au +T (wry)

response of each mode of the beam is well approximated by _ 7pb? R (35)
that of a SHO in this limit, and consequently give explicit Qn= I'i(wgrn) '

expressions for the resonant frequency and quality factor Oéubstituting Eq(34) into (30), and noting that in the limit of
the beam. '

To begin, we note that in the limit of small dissipative small dissipative effectsy=wg,,, we then find

effects, the modes of the beam are weakly coupled, and con-  |C*W(x|w) 22 2y 205 ] 7Y
sequently can be considered to be uncoupled, to leading or- |5 v 7| = (0"~ wg )"+ oz | (36)
der. It then directly follows from Eq(294 that the magni- " Rinls

tude of W(x|w) in the neighborhood of the resonance peakwhich is immediately identifiable as the frequency response

of moden is well approximated by of a SHO, with resonant frequenayr , and quality factor
Q, defined in Eqs(33) and(35), respectively. We empha-
|\7V(x| )= an(x) (30) size that the above conclusions and formulae for the resonant
s— C4 B*(w)|’ frequency and quality factor also hold for the frequency re-
sponse of the slope of the beam.
where the functiora,(x) is independent of frequenay and Finally we note that ifQ,>1, it is clear from Eq.(34)
is given by that dissipative effects in the fluid can be considered to be
‘ 2 2 1o small, and the analogy with the SHO is valid. Conversely, if
a(x)= _ 127 BT sin” C,, tarr C,, Q,=0(1), then it is evident that such an analogy is not
" kCS(sin Cp+sinh C)2[ 5| an(w')|?do’ justified. We shall examine these two cases in detail in the

following sections.

X Pn(X). (31)

We note that Eq(30) also holds for the frequency response IV. RESULTS AND DISCUSSION
of the slope of the beam EqR9b), except that the function
a,(x) is modified accordingly. Results shall now be be presented for the frequency re-
SinceB(w) has a small imaginary component in thesesponse of cantilever beams i@ctangularcross section that
cases, it is clear from Ed@30) that the resonance peaks will are excited thermally; see Fig. 2. Throughout, it is assumed
be sharp yet finite it nature. Furthermore, from Ed$) and that the widthb of the beam greatly exceeds its thicknass
(18) it is evident that in the neighborhood of a resonancethe hydrodynamic functiof’(w) is defined in Eq(20). This
peak, variations iB*(w) are dominated by a®(w?) con-  case is considered in detail since it is of significant practical
tribution, since the hydrodynamic functiof(w) varies importance in application to the AFM. We emphasize, how-
slowly asO(w %9 .3 Consequently, in the neighborhood of ever, that the general formulation presented is applicable to
the resonance peak of modeI'(w) can be considered to be beams of arbitrary cross section that are excited by arbitrary
constant, to leading order, and evaluated at the resonanciiving forces.
frequency of the mode in the absence of dissipative effects, To begin we note that the present theoretical model ap-
wr - Generalizing Eq(15 to encompass all modes, we proximates the hydrodynamic flow around a cantilever beam
then find that in the neighborhood of the resonance peak aff large but finite aspect ratio by one that is infinite in aspect
moden, B(w) is well approximated by ratio. Therefore, it is clear that the model is applicable in



70 J. Appl. Phys., Vol. 84, No. 1, 1 July 1998 John Elie Sader

practice provided the mode numberis not large(i.e., the
fundamental mode and its first few harmonic€onse-
guently, we shall primarily restrict our discussion to the fun- 100
damental mode and in some instances examine the effects on
the higher order modes. H

We now define the scaling parameters for the problem 10
which will enable us to examine the frequency response of
cantilever beams of arbitrary dimensions and material prop-
erties, immersed in viscous fluids of arbitrary density and
viscosity. From Eqgs(15) and(18), it is evident that the two
natural scaling parameteRe andT for the problem are

- Pwvac,lb2 T pb
Re— 47’ 1 - pch 1 (37) (a)
whereb is the width of the bear is its thicknessw, . 1 is 100

the radial resonant frequency of the fundamental mode of the

beam in vacuum, and use has been made of the property that

the mass per unit length of the beam p:.bh. The param- 10
eterRe is a normalized Reynolds number that indicates the
importance of viscous forces relative to inertial forces in the

fluid. In contrast,T is proportional to the ratio of the added- 1
apparent mass due to inertial forces in the fl(iid the ab-

sence of viscous effegtsto the total mass of the beam. Fur-

thermore, from Eqgs(12) and (37) it is evident that the 0.1
parameterRe can be expressed explicitly in terms of the

geometric and material properties of the beam o
¢ (b\2p [E (b) ®vac,1
Re=—— h| —\ﬁ. (38) : vl ?
8v3 \L/ 7 Pec FIG. 3. Normalized thermal spectid=|W'(1|w)|skwya{(2KsT), Eq.

(29b), of fundamental mode in neighborhood of peak. Thefers to the
Erom Eqs.(37) and (38) it is then clear that as the dimen- derivative with respect tg. Frequencies obtained using the inviscid formula
. f the cantilever beam are “uniformiv” reduceﬁ Eq. (39) are indicated by_vertical lines. Quality facthQl, Eq.(35), is
SIOI’]S_ o y — ! indicated for each cas®e=0.1 (short-dashed line Re=1 (dashed ling
remains unchanged whereas the Reynolds nuriEerde-  Re_ 10 (solid line). (@) T=0.005: (b) T=0.02.
creases linearly with the thickneks We shall examine the

implications of this decrease Re with decreasing beam size

(i.e., at constant) in the following discussion. _  mersed in gases, for various valuesR# andT. Results are
Before .presentlng. the results, we pote thgt valug&" of given forR_evO(l) andT~0(1072), since these correspond

for beams immersed in gases and liquids typically differ by yalyes typically encountered in practié#®28in all cases,
three orders of magnitude. This is a direct result of the dif-y)y the region in the neighborhood of the fundamental reso-
ference in densities of gases relative to those of liquids. Ih5nce peak is shown. Also indicated is the quality faQer
contrast, values fdRe in gases and liquids differ by only one of each resonance peak, as evaluated from(8%), and the
order of magnitude, since the kinematic viscositigp of  (asonant frequency in the limit aRe_0 Eq. (39). It is
gases are typically one order of magnitude greater than tho%ﬁ/ident from Fig. 3 that for a given value 3t decreasing

of liquids. ansgquently, we shall present s_eparate results f(ﬁ_e broadens and shifts the resonance peaks to lower frequen-
gases andlllq.wds th"’?t a-ccou.nt for these @ferences.- cies, a direct result of the increasing importance of viscous

In the limit of vanishing viscous effecte—c, we find  qte ot in the fluid. Furthermore, we note that the peak fre-
from Egs.(19) apd(33) th:_;\t_the_ resonant frequenmes _Of the gquencies are significantly lower than those predicted by the
beam,wg , are given explicitly in terms of its frequencies in inviscid fluid model, Eq.39), for all cases considered. We
VaCuUm,wyacp,, Namely emphasize that the shift in the peak frequency is primarily
®Rn mpb| 12 accounted for by Eq(33), which neglects any dissipative

: _( ) : (39 effects, indicating that an increase in inertial forces is the

primary cause. These results are consistent with recent ex-
which is the well-known result due to CHiwe shall use Eq.  perimental results of AFM cantileveté where it was dem-
(39) as our benchmark to examine the effects of viscosity oronstrated that the shift in the resonant frequency from
the frequency response of cantilever beams immersed in vissacuum to air cannot be account for by the broadening of the
cous fluids. resonance peak or by the inviscid fluid model, E89). A

In Fig. 3 we present results for the frequency response ofomparison of such experimental and theoretical results shall
the slope at the end poink€ 1) of cantilever beams im- be deferred to Ref. 33, where a detailed study shall be pre-

4p:h

Wyacn
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T = 0.005, 0.015, 0.045

0.001 0.01 0.1 1 10 100

_ra T =5, 15, 45
0.0001 | .~
0.01 0.1 1 10 100 1000
0 0.5 1 15 2 (b) Re

o FIG. 5. Plot of peak frequency, of fundamental resonance relative to

() (O N frequency in vacuumw,,ci. (@) T=0.045 (short-dashed line T=0.015

' (dashed ling T=0.005 (solid line). Results in the limitRe—« for T
FIG. 4. Normalized thermal spectid=|W’(1|w)|?Kwyac/(2KsT), Eq. =0.045, 0.015, 0.005 are (lwy/wyqc)=0.0172, 0.00584, 0.00196, re-

(29b), displaying fundamental mode and its first harmonic. Thefers to  spectively.(b) T=45 (short-dashed line T=15 (dashed ling T=5 (solid
the derivative with respect t®. Frequencies obtained using the inviscid line); Results in the limitRe—o for T=45, 15, 5 arew,/w,,=0.166,

formula Eq.(39) are indicated by vertical lineRe=1 (short-dashed line ~ 0.280, 0.451, respectively.
Re=10 (dashed ling Re=100 (solid line). (a) T=5; (b) T=20.

o _ 5and 6 we present detailed results for the peak frequepcy
sented. The results in Fig. 3 also demonstrate that for a givegng quality factorQ, of the fundamental resonance, as a
Re, an increase il has the effect of broadening and shifting ,nction of bothRe andT. The peak frequency is numeri-
the resonance peak to lower frequencies. Again, this is fally calculated from the frequency response, E2Pb),
direct result of an increase in viscous effects in the fluid. \yhereas the quality factor is obtained directly from E3p).

In Fig. 4 we give analogous results for cantilever beamsConsequently, results presented @ give quantitative in-
immersed in liquids. In this case, the frequency responsg, mation about the resonance peak provid@g>1, since
includes the fundamental mode and its first harmonic anghe analogy with the frequency response of a SHO is only
results are presented fdi~O(10) and Re-O(10). These vyalid in those cases. F@®;<O(1), however, no such anal-
values forRe andT are chosen since they correspond toogy exists andQ, only presents qualitative information
typical practical values for AFM cantilever beams immersedabout the resonance peak. In particular, @r<0O(1) one
in liquids!**3%Note the dramatic shifting and broadening can conclude that substantial broadening of the resonance
in the fundamental resonance peak compared to the resul@ak is present, and that the modes are significantly coupled.
presented in Fig. 3 for gases. It is also clear that significant reduction inQ, will then result in further broadening of
coupling occurs between the fundamental mode and its firgshe peak and an increased coupling of the modes. Finally, it
harmonic. In some cases, the first harmonic resonance peé#k interesting to note that a nonzero peak frequency is ob-
has almost vanished and the peak in the fundamental mode égrved in all cases presented. Such behavior is not observed
very close to zero frequency, due to the dramatic effect of thén a SHO model, where the peak frequency is found to be
surrounding fluid. In all cases note that the peak frequencieiglentically zero for all quality factor®,<1n2. These re-
of both the fundamental mode and its first harmonic occur agults demonstrate that f6,=<0O(1) the frequency response
significantly lower frequencies than that predicted by the in-of a cantilever beam is not analogous to that of a SHO. We
viscid fluid model, Eq.(39). Furthermore, we note that the shall discuss this in more detail below.
general trends regarding variations ke andT discussed Of particular interest in application to the AFM is the
above also apply to the results presented in Fig. 4. peak energy of the fundamental resonance, since this is ob-

To quantify the general trends discussed above, in Figsserved as noise in measurements made using the RFi.
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FIG. 6. Plot of quality factoQ=Q,, Eq. (35), for the fundamental mode.
(@) T=0.045 (short-dashed ling T=0.015 (dashed ling T=0.005 (solid
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FIG. 7. Plot of normalized peak energy of fundamental resonance
Ez\\fV(1|w)\§kwvaci(2kBT) as obtained from Eq(293. (a) T=0.045
(short-dashed ling T=0.015 (dashed ling T=0.005 (solid ling). (b) T
=45 (short-dashed line T=15 (dashed ling T=5 (solid line);

Fig. 7 we present the normalized peak energy of the funda-

mental resonance for gases and liquids, respectively;
sults were obtained numerically from EQ@93. Note that in

all régbserved for the same cantilever immersed in water. This

phenomenon depends of course on the specific valu&e of

all cases examined, the normalized peak energy displays andT of the cantilever in question, as is evident from Fig. 7.

minimum at a critical valueRe,,;, as the scaled Reynolds

numberRe is varied for a giverT. Consequently, foRe

>R_emn this peak energy increases monotonically with in-

creasingRe, whereas folRe<Rgy, it increases with de-
creasingRe. Upon comparison of Figs(#, 7(a) and Figs.

Next we examine the influence of the surrounding fluid
on the magnitude of the deflection functions of the modes,
henceforth referred to as the mode shapes, at their peak reso-
nant frequencies. In particular, we study the fundamental
mode and its first two harmonics, which correspond to
modes 1, 2, and 3, respectively. In FigaBwe give the

6(b), 7(b) it is evident thatRe&y, also corresponds to the
value ofRe whereQ;~ 1, indicating that dissipative effects
can be considered to be small fiBe>Re,,;, and significant

mode shapes of the fundamental mode for various values of
Re and for a fixed value of =5. Also included in Fig. 8)
it is the mode shape in the absence of viscous effects
for Re<Rey,. Since the energy in any one mode is fixed, it (Re ), which corresponds to no mode coupling. It is strik-
follows that if dissipative effects are small, then all modesmg|y evident from Fig. &) that the mode shape of the fun-
are weakly coupled and the normalized peak energy will degamental mode at peak frequency is virtually unaffected by
crease with decreasinge, due to the redistribution of the the presence of dissipative effects in the fluid, demonstrating
energy over a larger frequency range, as observedREr that coupling of higher order modes into the fundamental
>Renn. However, if dissipative effects in the fluid are sig- mode is insignificant. In contrast to the fundamental mode,
nificant, we find that the energy in the fundamental modeye observe in Fig. @) and 8c) that its first and second
redistributes itself towards lower frequenciesee Fig. 4 harmonics, modes 2 and 3, are both strongly affected by the
resulting in an increase in the peak energy for decred®&g presence of dissipative effects in the fluid. Unlike the mode
as observed foRe<Re,;,. We emphasize that this increase shapes in the absence of viscous effects, it is clear that the
in peak energy is not due to coupling of the higher ordemodes in the deflection function are eliminated by the fluid, a
modes into the fundamental mode, since this always remairdirect consequence of the strong coupling between modes
minimal, as we shall demonstrate below. These results thewhen dissipative effects in the fluid are significant.

indicate the possibility that the peak energy observed for a In Sec. Il D we rigorously showed that the frequency
given cantilever beam in air can in fact be smaller than thatesponse of a cantilever beam is identical to that of a SHO,
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FIG. 9. Comparison of amplitude frequency response of fundamental mode

0.8 evaluated using Eq299 (solid line) to best fit of SHO responsg@ashed
line) for T=15 andRe=10. Peak amplitude of response is normalized to
06 unity.
W
0.4
squares fit of the SHO model to the results of E2Pa.
0.2 From Fig. 9 it is clear that the frequency response of a SHO
is a poor approximation to the true frequency response of the
0 cantilever beam in this case.
(b) V. CONCLUSIONS
1 We have presented a general theoretical model for the
frequency response of a cantilever beam of arbitrary cross
08 section, immersed in a viscous fluid and excited by an arbi-
trary driving force. The primary restrictions of this model are
_ 06 that the length of the beam must greatly exceed its nominal
w 04 width, the amplitude of vibration must be small, and the fluid
must be incompressible in nature, properties that are satisfied
0.2 in many cases of practical interest. Unlike previous formula-
tions, the present model accounts for the loading induced by
0 the viscous fluid in a rigorous and quantitative fashion, thus
enabling the frequency response to be determined i@ an
© < priori manner from a knowledge of the material and geomet-

ric properties of the beam and the viscosity and density of

FIG. 8  Comparison of normalized mode shapesw  the fluid. Since beams of circular or rectangular cross section

E|W(>$a)p)|5/|0v(1|wp)|sat the peak resonant frequencies of each mode forare of significant importance in many applications, we also

T=5. Re=1 (short-dashed lifg Re=10 (dashed ling Re—x (solid line). presented explicit analytical formulae for their corresponding

(@ Mode 1;(b) Mode 2;(c) Mode 3. hydrodynamic functions, which will facilitate the calculation
of their frequency responses.

The response of a cantilever beam to a thermal driving
provided dissipative effects in the fluid can be considered tqorce was considered in detail, due to its fundamental signifi-
be small, i.e.Q,>1. We now demonstrate that this analogy cance in application to the AFM. It was found that the im-
is not valid for cases where dissipative effects are not Smalbortance of viscous effects is 5tr0ng|y dependent on the di-
i.e.,Qu=0(1). InFig. 9 we present the frequency responsemensions of the beam; decreasing these dimensions enhances
obtained from Eq(29a for the case wher®e=10, T=15,  viscous effects, resulting in increased broadening and shift-
in the neighborhood of the fundamental mode, for whiching of the resonant peak from its value in vacuum. For the
Q;=1. We found that for the values &e andT chosen, the case where dissipative effects in the fluid can be considered
frequency response over the entire frequency range indicatdd be small, it was shown that the frequency response of a
was virtually unaffected by the presence of the higher ordecantilever beam is well approximated by that of a SHO in the
modes, in line with the results presented above. Also showneighborhood of a resonant peak, for which we presented
in Fig. 9 is the frequency response of a SHO, whose resonasetxplicit analytical expressions for the resonant frequency and
frequency and quality factor were chosen to ensure that thquality factor. Finally, we presented detailed numerical re-
fit in the neighborhood of the true resonant peak was optisults for the frequency response of rectangular cantilever
mal. This was achieved by performing a nonlinear leastbeams of arbitrary dimensions, immersed in viscous fluids of
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arbitrary properties, which we believe will be of significant where §(x—x") is the Dirac delta function. The boundary
practical value to the users and designers of AFM cantileveconditions forG(x,x:|w) at the clamped and free ends are

beams. identical to those ofNV(x|w), namely
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APPENDIX A with 3°G/9x?, 9Glax, G all being continuous at=x".

In this appendix, we derive the Green's function The Green'’s function is then constructed in an analogous

G(x,x'| ) for the deflection of a cantilever beam. To begin, Manner to Ref. 38, by applying the above boundary and con-

we note that the governing equation 18(x,x’| ) is tinuity conditions to the general solution of the correspond-
’ ing homogeneous equatipire., Eq.(A1) with the right hand

side replace by zelpand making use of the symmetry prop-
erty G(x,x'|w)=G(x',x|w), from which we obtain

I*G(x,x'|w)

& —B*@)G(x,X'|w)=8(x—x"), (A1)

( ([cosB(w)+coshB(w)][coshB(w)x—cosB(w)X]
+[sin B(w)—sinhB(w)][sinh B(w)Xx—sin B(w)X])
X (sin(B(w)[x'—1])+sinh(B(w)[x'—1]))
+([cosB(w) +coshB(w)][sin B(w)Xx—sinh B(w)x]
—[sin B(w)+sinh B(w)][cosB(w)x—coshB(w)X]

1 X (cogB(w)[x'—1])+coshB(w)[x'—1])) :0=x=x'=<1
4B3(w)[1+cosB(w)coshB(w)] | ([cosB(w)+coshB(w)][coshB(w)x’'—cosB(w)x']
+[sin B(w)—sinhB(w)][sinhB(w)x' —sin B(w)X']

X (sin(B(w)[x—1])+sinh(B(w)[x—1]))
+([cosB(w)+coshB(w)][sin B(w)x'—sinhB(w)x']
—[sin B(w)+sinhB(w)][cosB(w)x’'—coshB(w)x']

X (cogB(w)[x—1])+cosHB(w)[x—1])) :0=x'=sx=<1.

G(x,x'|w)=

(A4)

APPENDIX B For the case of thermal excitation, each mode of the beam is
driven by a stochastic force of different magnitude, as dis-
In this appendix, we give the formal derivation of the cussed in Sec. Il C. Noting this, and using the above or-
results presented in Sec. Il C for the frequency response of thogonality property forp,(x), it then follows that the de-
cantilever beam excited by a thermal driving force. flection functionW(x|w) can be expressed as
To begin, we note that the deflection functidf{x| ) of
a cantilever beam with arbitrary damping can be decom- . .
posed into its individual undamped modgs(x), defined in W(x|w)= Z Fn(w)an(@) n(X), (B2
Eq. (24), by using the property thab,(x) form an orthonor- =t

mal basis set, i.e., where

1 1 i=j 1.
| 008,000 5 normise BD  enlw)= [ Wolxlo)gxdx ®3)
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whereIA:n(Aw) is the stochastic driving force for modhe The
function Wy(x|w) is the “transfer function” of the cantile-
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3’7TkBT
kCafglan(®)|?dw’”

Fo()|?= (B12)

ver beam and is given by its deflection function due to a

uniform impulse driving force applied along its entire length,
i.e., Fgrive(@)=1. From Eq.(17) it then follows that

1
2B*(w)[1+cosB(w)coshB(w)]

X (—2—2 cosB(w)coshB(w)
+co9B(w)X)+cosHB(w)X)+cogB(w)

Wo(x|w) =

X[1—x])coshB(w)+cosB(w)cosiB(w)
X[1—x])—sin(B(w)[1—x])sinh B(w)
+sin B(w)sinh(B(w)[1—X])), (B4)

whereB(w) is defined in Eq(15). Substituting Eq(B4) into
(B3) we obtain

2sinC,tanC,
Ch(Cr—B*w))(sin Cy+sinhC,)

(B5)

an(w)=

To calculate the magnitude of each driving foi%,g(w), we

use the property that the expectation value of the potentiak

energy for each mode is MgT. Consequently, we refer to
the general expression for the potential enetfyf) of the
beam,

1El (1] 8%w(x,t)\?
U(t)ZEF O(T) dx. (B6)
From Eq.(B2), it is clear thatw(x,t) is given by
WOGD = 25 Ba() $n(X), (B7)

where Bn(t) is the inverse Fourier transform of
Fn(w)ay(w). Sinceg,(x) satisfy Eq.(B1), and the bound-
ary conditions given in Eq(4), it then follows that the po-
tential energy of each modé,(t) is given by

2 2
d %(X)) dx.

dx?
From this expression and E(R4), the expectation value of
the potential energy of each mod¥ ,(t)) can be directly
calculated and equated with k£, from which we obtain

1 EIl 1
Un(t)=3 13 BalD) JO ( (B8)

3 keT= 3 KCHBAD)), (B9)

wherek is the spring constant of the beam and is given by

3EI
:?. (BlO)
Since B,(t) is the inverse Fourier transform of

Fn(w)a,(w), it is then follows that
2 = 1 - |2 ry|2 ’
(B0)= 5= | IFa(@Ean(wl7do’. 1

Substituting Eq(B11) into (B9) and rearranging, we find

Finally, noting that all modes are uncorrelated, it follows
from Eqgs.(B12) and(B2) that the magnitude ofV(x|w) is
given by

- 37ksT |an(w)|?
2_ B n 2
W) 3= 3 24 CiFzfan(w a0
(B13a
whereas the magnitude of the sIope\?U(x|w) is
IW(X|0)|? 3mkeT & |an(w)|?
x |, ki Ciglan(e)]?do’
deé(x)\?
x( ‘Z”)(( ) (B13b)

Equations(B13g and (B13b) are the required results.
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