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Torsional frequency response of cantilever beams immersed in viscous
fluids with applications to the atomic force microscope

Christopher P. Green and John E. Sadera)

Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia

~Received 11 March 2002; accepted 12 August 2002!

The frequency response of a cantilever beam is strongly dependent on the fluid in which it is
immersed. In a companion study, Sader@J. Appl. Phys.84, 64,~1998!# presented a theoretical model
for the flexural vibrational response of a cantilever beam, that is immersed in a viscous fluid, and
excited by an arbitrary driving force. Due to its relevance to applications of the atomic force
microscope~AFM!, we extend the analysis of Sader to the related problem of torsional vibrations,
and also consider the special case where the cantilever is excited by a thermal driving force. Since
longitudinal deformations of AFM cantilevers are not measured normally, combination of the
present theoretical model and that of the companion study enables the complete vibrational response
of an AFM cantilever beam, that is immersed in a viscous fluid, to be calculated. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1512318#
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I. INTRODUCTION

The frequency response of a cantilever beam can be
matically affected by the properties of the fluid in which it
immersed, as illustrated by numerous theoretical and exp
mental studies.1–11 Whereas calculation of the frequency r
sponse in vacuum can be performed routinely for many c
tilever beams of practical interest,12 analysis of the affects o
immersion in fluid poses a formidable challenge. To allevi
this problem and greatly simplify the analysis, it has be
commonly assumed that the fluid can be treated as b
inviscid in nature.1,2,4,7This simplifying assumption is valid
for cantilevers of macroscopic size, i.e., approximately 1
or greater in length, where excellent agreement betw
theory and experiment has been demonstrated.2

Recently, it was established that a uniform reduction
the cantilever dimensions reduces the validity of the invis
assumption.3 Indeed, for cantilevers of microscopic siz
such as atomic force microscope~AFM! cantilevers that are
approximately 100mm in length, fluid viscosity can greatly
affect their frequency response. In Ref. 3, Sader present
rigorous theoretical model for the frequency response of c
tilever beams that are undergoing flexural vibrations and
mersed in viscous fluids, which is of particular relevance
applications of the AFM.13 A comparison of this model with
detailed experimental measurements on AFM cantilev
was subsequently performed, which demonstrated the va
ity and accuracy of the theoretical model for cantilevers i
mersed in both gas and liquid.11

Importantly, cantilever beams also exhibit torsional a
longitudinal vibrations about and along their major axis,
spectively. However, a theoretical model for the frequen
response of cantilever beams immersed in viscous fluids,
exhibits these modes of deformation, and knowledge and
derstanding of the physical processes involved, is lackin

a!Author to whom correspondence should be addressed; electronic
jsader@unimelb.edu.au
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present. This gap in the literature is particularly significant
application to the AFM, where torsional deflections are ro
tinely measured.14–16Consequently, in this article we exten
the analysis of Ref. 3 to account for torsional vibrations17

We do not consider the case of longitudinal deformatio
since this cannot be measured normally in the AFM. Co
bining the theoretical models for flexural and torsional def
mations presented here and in Ref. 3, respectively, thus
ables the calculation of the complete frequency response
AFM cantilever beams immersed in viscous fluids.

We commence our investigation by examining the ge
eral case of a cantilever beam of arbitrary cross section
is excited by an arbitrary driving force. Using this gene
formulation, we then consider some specific cases that ar
particular relevance in practice. One case we examine is
where dissipative effects can be considered small. As in R
3, we rigorously prove that the analogy with the response
a simple harmonic oscillator~SHO! is valid in such cases
and we derive explicit expressions for the quality factor a
resonant frequency in fluid. Importantly, we recover the we
known formula due to Chu1 for immersion in an inviscid
fluid, when the fluid viscosity is neglected. In combinatio
with this investigation, we also present a detailed exami
tion of a cantilever beam that is excited by a thermal drivi
force, i.e., by Brownian motion of the fluid molecules, sin
this is of fundamental importance to the AFM.18 Detailed
results are given for cantilevers with rectangular geomet
and a comparison is made with the frequency response
flexural vibrations. These results are expected to be of va
to the users and designers of AFM cantilevers.

II. BACKGROUND ASSUMPTIONS

We begin by reviewing the assumptions to be imp
mented in the present theoretical model. These assump
are identical to those used in Ref. 3, where a more deta
discussion can be found. The problem under consideratio
il:
2 © 2002 American Institute of Physics
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that of a cantilever beam vibrating in a viscous fluid. A sch
matic illustration of a cantilever beam of rectangular cro
section is given in Fig. 1. We stress, however, that the th
retical model to be presented also holds for cantilever be
of arbitrary cross section.

In this study, we will assume the following:

~1! The cantilever beam is composed of a linearly elas
material and has a uniform cross section over its en
length;

~2! The length of the cantileverL is much greater than its
width b;19

~3! The amplitude of torsional deflections is much smal
than any geometric length scale of the beam;20

~4! Internal ~structural! dissipative effects in the cantileve
are negligible in comparison to those in the fluid;

~5! The fluid is incompressible in nature.

All these assumptions are typically satisfied in practice.3 Fi-
nally, we shall only consider torsional vibrations about t
major axis of the cantilever.

We note that the above assumptions are also im
mented in the inviscid formulation due to Chu1 for a rectan-
gular cantilever

v f

vvac
5S 11

3prb

32rch
D 21/2

, ~1!

wherev f andvvac are the torsional resonant frequencies
fluid and vacuum, respectively,r is the density of the fluid,
rc is the density of the cantilever, andb andh are the width
and thickness of the cantilever, respectively. At this stage,
note that good agreement of Eq.~1! with experimental mea-
surements on cantilevers of macroscopic size has been
onstrated previously.2 However, as discussed above, a u
form reduction in the dimensions of the cantilever increa
the effects of viscosity on the frequency response.

To examine the effect of viscosity, it is appropriate
consider the Reynolds number of the flow. Noting that
dominant length scale in the flow is the widthb of the can-
tilever, a consequence of assumption~2!, it then follows that
the appropriate Reynolds number Re is21

Re5
rvb2

4h
, ~2!

FIG. 1. Schematic illustration of a cantilever beam of rectangular cr
section showing dimensions and the coordinate system. The thickness
beam ish. The origin of the coordinate system is located at the cente
mass of the cross section of the beam at its clamped end.
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where r and h are the density and viscosity of the fluid
respectively, andv is a characteristic radial frequency o
torsional vibration. Importantly, viscosity can be neglect
when Re@1. For cantilevers of macroscopic size, this con
tion is satisfied, and explains the good experimental ag
ment found in Ref. 2. However, for cantilevers of micr
scopic size executing torsional vibrations, such as AF
cantilevers, Re;O~10!. This in turn indicates that viscou
effects in the fluid can be significant and should be includ
in any analysis.

III. THEORY

A. General theoretical model

We now present a general theoretical model for the t
sional vibration of a cantilever beam immersed in a visco
fluid and excited by an arbitrary driving force.

The equation governing the deflection angle of a ca
lever beam undergoing torsional deformation about its ma
axis is12,17

GK

L2

]2f~x,t !

]x2 2rcI p

]2f~x,t !

]t2 5m~x,t !, ~3!

wheref(x,t) is the deflection angle about the cantileve
major axis~see Fig. 2!, G is the shear modulus of the cant
lever,K is a geometric function of the cross section,12,22,23rc

its density,L its length,I p its polar moment of inertia abou
the axis of rotation,12,22 t is time, andm(x,t) is the applied
torque per unit length along the beam. The spatial variabx
is dimensionless, having been scaled by the length of
cantilever beam, i.e.,xP(0,1). The appropriate fixed-fre
boundary conditions for a cantilever clamped at the ori
are

f~0,t !50,
]f

]x u x5150. ~4!

Since we are primarily interested in the frequency respo
due to torsional vibration of the beam, we take the Four
transform of Eq.~3! to obtain

GK

L2

d2F~xuv!

dx2 1rcv
2I pF̂~xuv!5M̂ ~xuv!, ~5!

where the Fourier transform of any functionx(t) is denoted
by

s
the
f

FIG. 2. Schematic illustration of a deformed cantilever beam of rectang
cross section indicating the deflection anglef(x,t) due to an applied torque
per unit lengthm(x,t).
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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X̂~v!5E
2`

`

x~ t !eivtdt, ~6!

andv is the radial frequency. The appropriate boundary c
ditions for F̂(xuv) are the Fourier-transformed version
Eq. ~4!.

Next, we decompose the applied torque per unit leng
M̂ (xuv), into two contributions: a hydrodynamic torque p
unit length,M̂hydro(xuv), due to loading of the surroundin
fluid, and a driving torque per unit length,M̂drive(xuv), i.e.

M̂ ~xuv!5M̂hydro~xuv!1M̂drive~xuv!. ~7!

The hydrodynamic torque per unit length,M̂hydro(xuv), is
found by solving the Fourier-transformed equations of m
tion for the fluid

2 ivrû52“ P̂1h“2û, “•û50, ~8!

whereû is the velocity field,P̂ is the hydrodynamic pressure
andr andh are the fluid density and viscosity, respective
The nonlinear convective inertial term is neglected in E
~8!, a direct consequence of assumption~3! in Sec. II. Fur-
thermore, assumption~2! in Sec. II indicates that the velocit
field û varies much faster over the width of beamb than it
does over the lengthL. It is therefore clear that the velocit
field at any position along a cantilever of large but fin
aspect ratio (L/b) is well approximated by that for an infi
nitely long rigid cantilever, that is executing torsional osc
lations of the same amplitude at that position. Conseque
it follows that M̂hydro(xuv) has the general form

M̂hydro~xuv!52
p

8
v2rb4G~v!~F̂xuv!, ~9!

whereG~v! is the ‘‘hydrodynamic function,’’ a dimension
less complex-valued function obtained by solving Eq.~8! for
motion of the rigid beam described above. The hydro
namic function depends on the cross section of the can
ver, enabling formulation of the present model for a cant
ver of arbitrary cross section. This function, which can
calculated either analytically or numerically, depending
the cross section, will be discussed in Sec. III B.

Substituting Eqs.~7! and ~9! into Eq. ~5!, we obtain

d2F̂~xuv!

dx2 1
rcv

2I pL2

GK S 11
prb4

8rcI p
G~v! D F̂~xuv!

5 t̂drive~xuv!, ~10!

where

t̂drive~xuv!5
L2

GK
M̂drive~xuv! ~11!

is the scaled driving torque. Using the expression for
natural frequency of the fundamental mode of torsional
bration in vacuum,12

vvac,15
p

2L
AGK

rcI p
, ~12!

the elastic properties of the cantilever beam can be implic
removed from Eq.~10! to give
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d2F̂~xuv!

dx2 1A2~v!F̂~xuv!5 t̂drive~xuv!, ~13!

where

A~v!5
p

2

v

vvac,1
S 11

prb4

8rcI p
G~v! D 1/2

. ~14!

To determine the frequency response due to an arbit
driving torquet̂drive(xuv), we solve Eq.~10! using the theory
of Green’s functions24 to obtain

F̂~xuv!5E
0

1

G~x,x8uv! t̂drive~x8uv!dx8, ~15!

where the appropriate Green’s function is

G~x,x8uv!52
sec@A~v!#

A~v!

3H cos$A~v!@12x8#%sin@A~v!x#, 0<x<x8<1

cos$A~v!@12x#%sin@A~v!x8#, 0<x8<x<1
.

~16!

Equation ~15! is the required result and gives the to
sional frequency response of the cantilever beam imme
in a viscous fluid and excited by an arbitrary driving force

B. Hydrodynamic function

In order to calculate the frequency response using
~15!, we require an expression for the hydrodynamic fun
tion G~v!. As discussed in Sec. III A,G~v! is obtained by
solving Eq.~8! for an infinitely long rigid beam whose cros
section is identical to that of the cantilever under consid
ation. Here, we consider two cases of practical intere
namely, cantilevers of circular and rectangular cross sect

An analytic expression forG~v! for a beam of circular
cross section is well known,25 and is given by

Gcirc~v!5
2i

Re
1

iK 0~2 iAiRe!

AiReK1~2 iAiRe!
, ~17!

where Re is defined in Eq.~2!, b refers to the diameter of the
beam and the subscript circ indicates a circular cross sec
The functionsK0 and K1 are modified Bessel functions o
the third kind.26

Unfortunately, there does not exist an analytical expr
sion for the hydrodynamic function of a beam of a rectang
lar cross section undergoing torsional oscillation. At th
stage, we point out that the hydrodynamic loading on a re
angular beam of finite thickness is well approximated by t
of an infinitely thin beam, provided its thicknessh is much
smaller than its widthb. This approximation simplifies the
analysis considerably and is used in the present study. E
so, formulating an analytical solution for this geometry s
poses a formidable task. Therefore, to overcome this d
culty, we implement the boundary integral technique
Tuck,27 which enables us to calculateG~v! numerically, the
results of which are presented in Fig. 3. For details of t
calculation, see Appendix A.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



n

la

l
er
ns

or
on
r o
e-
di

ul
r

ct
b
i

r
lu

c

ee
e

tic
lar

al
ate
-
ata

27.
ic

mic

al
Re

by
e

ng
the
-

ts
em,
en-
the
t
lcu-
the

ver

-
ts,

6265J. Appl. Phys., Vol. 92, No. 10, 15 November 2002 C. P. Green and J. E. Sader
It is apparent from Fig. 3 that the imaginary compone
of G~v! is much larger than the real component for Re!1.
This contrasts to the hydrodynamic function for a rectangu
beam executing flexural oscillations,3 where the real and
imaginary components ofG~v! are similar magnitude for al
Re(1. This difference in behavior leads to a marked diff
ence between the flexural and torsional frequency respo
at low Re, as will be demonstrated in Sec. IV.

To validate the accuracy of this numerical solution f
G~v!, and to assist in formulating an analytical expressi
we now examine the low and high Re asymptotic behavio
the hydrodynamic function; the derivation of which is pr
sented in Appendix B. These asymptotes, which are
played as dashed lines in Fig. 3, are given by

G rect~v!5H i

Re
2

3

8
ln~2 iAiRe!, Re→0

1

16
, Re→`

, ~18!

where the subscript rect refers to a beam of a rectang
cross section. Comparing this to the asymptotic behavio
Gcirc(v) for the beam of a circular cross section,25

Gcirc~v!5H 2i

Re
2 ln~2 iAiRe!, Re→0

A i

Re
, Re→`

, ~19!

it is clear that the hydrodynamic functions for beams of re
angular and circular cross sections have similar low Re
havior, yet their asymptotic behavior for large values of Re
very different. Specifically, as Re→`, the hydrodynamic
function for the beam of circular cross section goes to ze
whilst for a rectangular beam, it approaches a constant va
This contrasts to the case of flexural oscillations,3 where the
same asymptotic behavior is observed in both limits for re
angular and circular beams.

Consequently, the approximate equivalence betw
rectangular and circular geometries utilized in Ref. 3 in d
riving an approximate analytical expression forG~v! cannot
be used here. Instead, we construct an empirical analy
formula for the hydrodynamic function for the rectangu

FIG. 3. Hydrodynamic functionG~v! for an infinitely thin rectangular can
tilever. The subscriptsr and i refer to the real and imaginary componen
respectively. Asymptotic solutions are shown as dashed lines.
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beam, that is valid for all Re, by interpolating the numeric
results presented in Fig. 3 while satisfying the appropri
asymptotic limits in Eq.~18!. This is achieved using a non
linear least-squares fitting procedure on the numerical d
obtained using the boundary integral technique of Ref.
The resulting analytical expression for the hydrodynam
function for the rectangular beam is then given by

G rect~v!5G r~v!1 iG i~v!, ~20!

where

G r~v!5S 5Re215 ln~Re!18

80~Re11! D3~4.179 5020.252 69t

12.883 08t220.086 80t310.338 37t4

10.033 18t510.018 84t6!~122.276 59t

12.101 79t220.11365t310.34989t4

10.03779t510.01884t6!21,

G i~v!5S 0.41

ARe
1

1

ReD 3~0.824 9420.677 01t

10.411 50t220.167 48t310.048 97t4

20.011 07t510.001 48t6!~120.729 62t

10.406 63t220.165 17t310.049 07t4

20.011 10t510.001 48t6!21, ~21!

are the real and imaginary components of the hydrodyna
function, respectively, andt5 log10(Re).

Although this analytical expression forG rect(v) is ap-
proximate, it has the correct asymptotic behavior as Re→0
and Re→`, and is accurate to within 0.1% for both the re
and imaginary components over the entire range of
shown in Fig. 3.

C. Thermal driving force

We now consider the case of a cantilever beam driven
thermal motion of the fluid molecules, and explicitly deriv
the thermal noise spectrum due to torsional vibrations.

First, we note that thermal excitation results in a drivi
torque that is stochastic in nature and independent of
spatial positionx. Therefore, the driving torque can be sim
plified to give

t̂drive~xuv!5 t̂drive~v!. ~22!

Assuming the cantilever is in thermal equilibrium with i
surroundings, we can then invoke the equipartition theor
which states that the expectation value of the potential
ergy of each mode of torsional vibration must be equal to
thermal energy 1/2kBT, wherekB is Boltzmann’s constan
andT is the absolute temperature. This enables us to ca
late the stochastic driving torques exciting each mode of
cantilever.

To proceed, we note that the deflection of the cantile
can be decomposed into the undamped modes12

gn~x!5sin~knx!, ~23!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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wherekn5(2n21)p/2, n51,2,...,. Using the property tha
these modes form an orthogonal basis set,28 i.e.

E
0

1

g i~x!g j~x!dx5H 1
2, if i 5 j

0, otherwise
, ~24!

and that each mode of vibration is driven by a stocha
torque whose magnitude is dictated by the equipartition th
rem, it then follows that the rotation angleF̂(xuv) can be
expressed as

F̂~xuv!5 (
n51

`

t̂ n~v!an~v!gn~x!, ~25!

where

an~v!52E
0

1

F̂0~xuv!gn~x!dx, ~26!

and t̂ n(v) is the stochastic driving torque for then-th mode
of vibration. The functionF̂0(xuv) is obtained by solving
Eq. ~15! for a unit driving torque,t̂drive(v)51, and is given
by

F̂0~xuv!5
1

A2~v!
$12cos@A~v!x#

2sin@A~v!x#tan@A~v!#%. ~27!

Substituting Eq.~27! into Eq. ~26! and integrating, we find

an~v!5
2

kn@A2~v!2kn
2#

. ~28!

In order to apply the equipartition theorem, we need
evaluate the expectation value of the potential energy of
cantilever beam. For a beam executing torsional motion,
potential energy is given by29

U~ t !5
1

2

GK

L E
0

1S ]f~x,t !

]x D 2

dx. ~29!

Since the undamped modes form an orthogonal basis
substituting the inverse Fourier transform of Eq.~25! into
Eq. ~29! gives the potential energy of then-th mode,

Un~ t !5
1

2

GK

L
bn

2~ t !E
0

1S dgn~x!

dx D 2

dx, ~30!

wherebn(t) is the inverse Fourier transform oft̂ n(v)an(v).
Equating the expectation value of the potential energy
each modê Un(t)&, with the thermal energy 1/2kBT, we
obtain

1
4kfkn

2^bn
2~ t !&5 1

2kBT, ~31!

wherekf is the torsional spring constant of the beam, d
fined as22

kf5
GK

L
. ~32!

From the definition ofbn(t), it then follows that:

^bn
2~ t !&5

1

2pE2`

`

u t̂ n~v8!us
2uan~v8!u2dv8, ~33!
Downloaded 28 Nov 2002 to 128.250.6.244. Redistribution subject to A
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where the subscripts refers to the spectral density. Substitu
ing Eq. ~33! into Eq. ~31! and solving foru t̂ n(v)us

2 gives

u t̂ n~v!us
25

2pkBT

kfkn
2*0

`uan~v8!u2dv8
. ~34!

Since all the vibrational modes are uncorrelated, substitu
of Eq. ~34! into Eq. ~25! yields the required result

uF̂~xuv!us
25

2pkBT

kf
(
n51

` uan~v!u2

kn
2*0

`uan~v8!u2dv8
gn

2~x!.

~35!

This expression is the thermal noise spectrum of the rota
angle due to excitation by Brownian motion of the fluid mo
ecules.

In practice, deflections of AFM cantilevers are com
monly measured using the optical deflection techniq
Hence, the square root of Eq.~35! is directly comparable
with experimental results.

D. Small dissipative effects

In the limit as dissipative effects in the fluid becom
small, i.e., when the real part ofA(v) is much greater than
its imaginary part, the resonance peaks will be very sharp
such cases, the thermal noise spectrum in the vicinity of
n-th resonant peak can be obtained by extracting individ
terms out of the infinite series in Eq.~35!, i.e.,

uF̂~xuv!us>U bn~x!

A2~v!2kn
2U, ~36!

where

bn~x!5S 8pkBT

kfkn
4*0

`uan~v8!u2dv8D
1/2

gn~x!, ~37!

is a function independent of frequencyv.
From consideration of the viscous boundary layer on

surface of the beam, which forms in this limit~Re@1!, it is
apparent that the hydrodynamic functionG~v! varies as
O(v21/2).30 From Eq.~14!, it is then clear that the function
A2(v) is dominated by anO(v2) variation. Consequently, in
the immediate vicinity of a resonant peak,G~v! can be con-
sidered constant to leading order, and evaluated at the r
nant frequency of the mode in the absence of dissipa
effects, vR,n . GeneralizingA(v) to encompass all vibra
tional modes, and evaluating the hydrodynamic function
the resonant frequency of then-th mode,vR,n , we obtain

An~v!>knS v

vvac,n
D S 11

prb4

8rcI p
@G r~vR,n!1 iG i~vR,n!# D 1/2

,

~38!

whereG r(vR,n) andG i(vR,n) refer to the real and imaginar
components of the hydrodynamic function, respectively
then follows from Eq.~38! that in the limit of small dissipa-
tive effects,vR,n is given by

vR,n

vvac,n
5S 11

prb4

8rcI p
G r~vR,n! D 21/2

. ~39!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Substituting this expression into Eq.~38! and rearranging,
we find

An~v!5knS v

vR,n
D S 11

i

Qn
D 1/2

, ~40!

where

Qn5

8rcI p

prb4 1G r~vR,n!

G i~vR,n!
. ~41!

Substituting Eq.~40! into Eq. ~36! and using the property
that in the limit of small viscous effects,v>vR,n in the
vicinity of a resonant peak, we obtain

Ukn
2F̂~xuv!

vR,n
2 bn~x!

U
s

>F ~v22vR,n
2 !21

v2vR,n
2

Qn
2 G21/2

, ~42!

which is the frequency response of a simple harmonic os
lator ~SHO!, with resonant frequencyvR,n and quality factor
Qn , defined in Eqs.~39! and ~41! respectively.

From Eq.~40!, it is clear that dissipative effects in th
fluid can be considered small providedQn@1. In this region,
the analogy with the response of a SHO is valid, which
identical to the findings for flexural vibrations.3

IV. RESULTS AND DISCUSSION

Due to its significance to the AFM, we now present e
plicit numerical results for a cantilever beam of a rectangu
cross section that is excited by a thermal driving for
Throughout, we assume that the thicknessh of the beam is
much smaller than its widthb, which is the case most ofte
encountered in practice. Even though we only consider c
tilevers with rectangular cross sections here, we empha
that the theoretical model presented above is applicabl
cantilever beams of arbitrary cross sections that are
mersed in viscous fluids of arbitrary density and viscos
and excited by arbitrary driving forces.

It is important to note that in practice, expressions
the torsional frequency response presented in the prece
sections are valid provided the mode numbern is not large.
This restriction arises from the assumption that the can
ver’s lengthL greatly exceeds its widthb. Consequently, we
restrict our attention to the fundamental mode, and in so
cases, the next harmonic.

For the rectangular beam under consideration, the g
metric parametersI P andK are well approximated by22

I P>
b3h

12
, K>

bh3

3
. ~43!

It then follows from Eqs.~14!, ~20!, and~43!, that there exist
two natural dimensionless parameters that characterize
problem,

T̄5
rb

rch
, Rē5

rvvac,1b
2

4h
. ~44!

Physically, the parameterT̄ is proportional to the ratio of the
added-apparent mass due to inertial forces in the fluid to
actual mass of the cantilever, in the absence of viscous
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fects. The other parameter Rēis a normalized Reynolds num
ber, which relates the importance of inertial to viscous forc
in the fluid.

Importantly, using Eqs.~12! and ~43!, Rē can be ex-
pressed in terms of the material and geometric propertie
the beam

Rē5
p

4
h

b

L

r

h
AG

rc
. ~45!

From Eqs.~44! and ~45!, it is then clear that as the dimen
sions of the cantilever are uniformly reduced,T̄ remains con-
stant while Rēdecreases linearly with the thicknessh. This
indicates that viscous effects in the fluid become increasin
important as the dimensions of the cantilever beam are
formly reduced, in line with the analysis of the flexur
response.3 We present numerical results that examine
consequences of this phenomenon below.

In practice, AFM cantilevers are immersed in both ga
eous and liquid mediums, and we use the parameterT̄ to
distinguish between these two cases. In gases and liquids
values ofT̄ typically differ by three orders of magnitude, du
to the difference in the density of gas relative to liquid. Co
sequently, for AFM cantilevers,T̄;O(1022) for gases and
T̄;O(10) for liquids, which are identical values to thos
used in the analysis of the flexural response.3 Values of Rē
for the torsional response, however, are typically an orde
magnitude larger than the corresponding values for the fl
ural response. The reason for this follows from the relatio
ship between the fundamental vacuum frequencies of fl
ural and torsional vibrations, which is obtained using E
~12! of Ref. 3 and Eq.~12! of this paper,

vvac,1
t

vvac,1
f 52.1886

L

b
A 1

11n
, ~46!

where the superscriptst and f refer to torsional and flexura
vibrations, respectively. For typical AFM cantilevers,L/b
;O(10) and n'0.25. From Eq.~46!, we then find that
vvac,1

t '10vvac,1
f , indicating that viscosity is expected to b

less important for the torsional response than for the flexu
response. For AFM cantilevers undergoing torsional vib
tions, we then have Rē;O(10) for gases and Rē;O~100!
for liquids, values ten times larger than those for the cor
sponding case of flexural vibration.3

Importantly, in the limit as fluid viscosity becomes ne
ligible, i.e., Rē→`, we recover the inviscid result of Chu1

from Eqs.~18!, ~39! and ~43!, namely,

vR,n

vvac,n
5S 11

3prb

32rch
D 21/2

. ~47!

We shall examine the validity and accuracy of this invisc
model when applied to AFM cantilevers in subsequent
sults.

In Fig. 4, the torsional frequency response of a rect
gular cantilever immersed in gas, in the vicinity of the fu
damental resonant peak, is examined. From these results
clear that as Rēis decreased whileT̄ is held constant, the
relative shift in the peak~resonant! frequencies from vacuum
to gas increases, while the quality factor decreases. This
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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direct consequence of the increasing effect of viscosity
practice, this reduction in Rēat constantT̄ can be realized by
either a uniform decrease in the dimensions of the cantile
or an increase in its length only. We emphasize that the s
in peak frequencies is primarily due to inertial effects in t
fluid, with dissipative effects contributing comparative
little, i.e., the peak frequencies are accurately described
Eq. ~39!. However, comparing these results with those p
dicted by the inviscid model, Eq.~47!, which neglects vis-
cous effects, it is clear that the inviscid model can lead
large errors in the peak frequencies.

Turning our attention to the quality factor, it is evide
from Fig. 4 of this article, and Fig. 3 of Ref. 3, that th
quality factors for the torsional response are significan
larger than those of the corresponding flexural response.
finding is in line with the above prediction that viscous e
fects in the fluid are indeed less important for torsional
brations.

Next, we examine the effect of immersing cantilevers
liquid. Corresponding results for the first two modes of
bration of a cantilever immersed in liquid are presented
Fig. 5. As in Fig. 4, we find that as Rēis decreased for a
fixed T̄, the resonance peaks shift to lower frequencies,
though the shift is more pronounced due to the increa
density of liquid relative to gas. We also find that the invisc
model leads to significant errors for the~typical! values of
Rēconsidered. Importantly, all quantitative effects describ

FIG. 4. Normalized thermal spectraE5uF̂(1uv)us
2kfvvac,1/(2kBT) in the

vicinity of the fundamental resonance peak for Re5̄1 ~–––!; Rē510

~— —!; and Rē5100~ !. The vertical line is the inviscid result Eq.~47!.
Quality factorsQ5Q1, as obtained from Eq.~41! are also given.~a! T̄
50.005 and~b! T̄50.02.
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in Ref. 3 for the flexural response are also observed h
Namely, significant coupling of the first higher harmonic a
the fundamental resonance occurs as Reīs reduced, and the
peak noise level of the fundamental mode can actually
crease with a decrease in Re.̄ This behavior will be examined
in detail below.

To quantify the dependence of the fundamental peak
quency and quality factor on RēandT̄, we present numerica
results for these quantities in Figs. 6 and 7, respectively.
peak frequency is calculated numerically from Eq.~35!,
whereas the quality factor is obtained directly from Eq.~41!.
It is evident from Fig. 6 that a decrease in Reāt a constant
value ofT̄, or an increase inT̄ at a constant Rē, enhances the
relative shift in the peak frequency from vacuum to flui
Physically, the former case can be realized by uniformly
creasing all the dimensions of the cantilever, whereas
latter case corresponds to a uniform increase in the width
length at fixed thickness. We observe that the peak freque
of a cantilever immersed in a liquid is typically much small
than that of a cantilever immersed in a gas; this is prima
a consequence of greater inertial loading in liquids. As̄
→`, the peak frequencies approach values predicted by
inviscid model, Eq.~1!. Upon comparison of Fig. 6 with Fig
5 of Ref. 3, it is clear that as Rēis reduced at fixedT̄, the
peak frequency of the fundamental mode decreases m
more rapidly for the torsional response than for the flexu
response for Rē&1. This is consistent with the marked di

FIG. 5. Normalized thermal spectraE5uF̂(1uv)us
2kfvvac,1/(2kBT) in the

vicinity of the fundamental resonance peak for Re5̄10 ~–––!; Rē5100 !;

and Rē51000~ !. The vertical lines are the inviscid results Eq.~47!. ~a!
T̄55 and~b! T̄520.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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FIG. 6. Peak frequencyvp of fundamental mode.~a! Gas:T̄50.005~ !;
T̄50.015~— —!; andT̄50.045~–––!. Inviscid results as obtained from Eq
~47! are 12vp /vvac,150.000 735, 0.002 20, and 0.006 56, respectively.~b!
Liquid: T̄55 ~ !; T̄515 ~— —!; and T̄545 ~–––!. Inviscid results are
obtained from Eq.~47! arevp /vvac,150.636, 0.430, and 0.265, respectivel

FIG. 7. Quality factor,Q5Q1, of fundamental mode.~a! Gas: T̄50.005
~ !; T̄50.015 ~— —!; and T̄50.045 ~–––!. ~b! Liquid: T̄55 ~ !;
T̄515 ~— —!; and T̄545 ~–––!.
Downloaded 28 Nov 2002 to 128.250.6.244. Redistribution subject to A
ference in the hydrodynamic functions for the two cases
small values of Rē, as discussed in Sec. III B, c.f., Fig.
with Fig. 1 of Ref. 13.

The quality factors of the fundamental resonance pea
Q5Q1, obtained from Eq.~41!, are presented in Fig. 7. A
expected, the quality factor decreases as Reīs reduced at
fixed T̄. We emphasize that these results give quantita
information about the shape of the resonant peak whenQ
@1, for it is in this region that the analogy with a SHO
derived formally. ForQ&O(1), however, the analogy with
the response of a SHO is not valid. Nonetheless, such va
of Q indicate significant broadening of the resonance pea
Finally, we note that the current model predicts a nonz
peak frequency for all values of Rē, in line with the predic-
tions for flexural vibrations.3 However, the flexural reso
nance peaks are much sharper than the torsional peak
Q&O(1) an example of which can be seen by compar
the Rē510 curve in Fig. 5~b! of this article with the Rē51
curve in Fig. 4~b! of Ref. 3.

Due to its importance to noise considerations in AF
measurements,8,18 we now examine the peak thermal ener
of the fundamental mode of torsional vibration, the results
which are presented in Fig. 8, and have been calculated u
Eq. ~35!. Note that there exists a distinct minimum in th
peak energy. Interestingly, the value of Rew̄here this occurs
coincides with a quality factor ofQ1;1, as calculated from

FIG. 8. Normalized peak energyEp5uF̂(1uvp)us
2kfvvac,1/(2kBT) of fun-

damental mode.~a! Gas:T̄50.005 ~ !; T̄50.015 ~— —!; and T̄50.045
~–––!. ~b! Liquid: T̄55 ~ !; T̄515 ~— —!; and T̄545 ~–––!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Eq. ~41!. This phenomenon was also observed for flexu
vibrations.3 The physical reason for this phenomenon is ide
tical to that for flexural vibrations, and consequently t
reader is referred to Ref. 3 for a detailed discussion.

In many applications, the deflections of AFM cantileve
are measured using the optical deflection technique. For s
situations, the complete thermal noise spectrum of a can
ver beam,uScomp(xuv)us

2, can be obtained by summing th
slope and rotation angle of flexural and torsional deflectio
respectively. Using the theoretical models presented here
in Ref. 3, and assuming identical sensitivities for flexural a
torsional measurements,31 we then obtain

uScomp~xuv!us
25

3pkBT

kL2 F~xuv!1
2pkBT

kf
P~xuv!, ~48!

whereF(xuv) and P(xuv) are given in Eq.~29b! of Ref. 3
and Eq.~35! of this article, respectively, andk is the normal
spring constant.3 Using Eq.~28! of Ref. 3 and Eq.~32! of
this article, Eq.~48! can be reexpressed as

uScomp~xuv!us
25

3pkBT

kL2 ~F~xuv!1~11n!P~xuv!!.

~49!

We also define a parameter

l5
L

b
A 1

11n
, ~50!

which is a scaled aspect ratio that is proportional to the r
of the vacuum frequencies of torsional and flexural vib
tions, c.f., Eq.~46!. This parameter will be utilized in the
following discussion.

We now investigate the relationship between the p
noise levels of the fundamental resonances for flexural
torsional vibrations, i.e., the ratio of (11n)P(xuvp

t ) to
F(xuvp

f ), wherevp
t and vp

f refer to the fundamental pea
frequencies of the torsional and flexural modes, respectiv
Results for rectangular cantilever beams immersed in gas
liquid are presented in Fig. 9, as a function of the parame
Rēf ,T̄, andl. The subscriptf in Rēf refers to the normalized
Reynolds number for flexural vibrations, which is defined
Eq. ~37! of Ref. 3. Note that in all cases, the flexural pe
noise level exceeds the torsional peak noise level, and
difference rises asl is increased.

It is of interest to examine the physical significance
these results, and consider three separate cases:

~I.! A uniform reduction in the dimensions of the can

lever,corresponding to reducing Rēf at constantT̄ andl;
~II.! An increase in the length only of the cantileve

which corresponds to reducing Rēf but increasingl at con-
stantT̄;

~III. ! A reduction in the width only of the cantilever,cor-
responding to reducing Rēf and T̄, while increasingl.

To examine the effects of these three cases, we introd
a geometric scaling parameterz, which is used to vary the
dimensions of the cantilever in each case comparatively
Case I, the dimensions are varied as (L/z,b/z,h/z), in Case
Downloaded 28 Nov 2002 to 128.250.6.244. Redistribution subject to A
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II as (zL,b,h), whereas in Case III we have (L,b/z,h).
Increasing the single parameterz, thus enables us to impos
a uniform variation in all three cases, and make a simu
neous comparison.

FIG. 9. Ratio of peak noise levels of torsional and flexural vibration,R
5(11n)P(1uvp

t )/F(1uvp
f ), where vp

t and vp
f refer to the fundamental

peak frequencies of the torsional and flexural modes, respectively. Gas~a!

Rēf50.1; ~b! Rēf51; $T̄50.005 ~ !; T̄50.015 ~— —!; and T̄50.045

~–––!%. Liquid: ~c! Rēf510; ~d! Rēf5100; $T̄55 ~ !; T̄515 ~— —!;
and T̄545 ~–––!%.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



i
ia

f
i.

ra
0
or
th
s
a
g

m

ra
e

th

ak
n-
al
s
ral

the
ng

the
ct,

nce
ak,
will
ove

he

f
lin-

d
ac-

e
nce
the
n
for
ig.

an-

ller
can
the
m
t
the

is
ar
ity,
nal
is

-
he

6271J. Appl. Phys., Vol. 92, No. 10, 15 November 2002 C. P. Green and J. E. Sader
As an example, we consider a cantilever immersed
gas and liquid, that is characterized by the following init
~z51! parameter set: Gas~l55, Rēf51, andT̄50.005!; Liq-
uid ~l55, Rēf510, andT̄55!. We remind the reader thatl is
independent of the medium in which the cantilever is im
mersed, and that Rē5lRēf . We then vary the dimensions o
the cantilever in accordance with the above three cases,
we increase the geometric parameterz, and examine the ratio
of the fundamental peak noise levels of torsional to flexu
vibrations. The results of this study are given in Fig. 1
where we find that the ratio of the peak noise levels of t
sional to flexural vibration decreases always. However,
rate at which this decrease occurs, and the mechanism
volved, differ in all three cases, the reasons for which sh
now be discussed. We consider the case of immersion in
in detail first.

In Case I, the ratio of the torsional and flexural vacuu
frequencies is independent ofz, see Eq.~46!. Therefore, the
fundamental peak frequencies of torsional and flexural vib
tions in gas are approximately fixed relative to one anoth
In addition, both Rēand Rēf decrease at the same rate wi
increasingz, namely, inversely proportional toz. Comparing

FIG. 10. Ratio of peak noise level of torsional and flexural vibration,R
5(11n)P(1uvp

t )/F(1uvp
f ) as a function of the geometric scaling param

eter z, wherevp
t and vp

f refer to the fundamental peak frequencies of t
torsional and flexural modes, respectively. Case I~ !; Case II~–––!; and

Case III~— —!. ~a! Gas: Atz51, we have Rēf51, T̄50.005, andl55. ~b!

Liquid: At z51, we have Rēf510, T̄55, andl55.
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Fig. 7~a! of this article and Fig. 6~a! of Ref. 3, we then
observe that the ratio of the quality factorQt for the torsional
response to the quality factorQf for the flexural response, is
approximately constant asz is increased; the ratio of quality
factors Qt /Qf decreases by;10% asz is increased from
z51 to z55. This indicates that the torsional resonance pe
flattens only slightly faster than the flexural peak with i
creasingz. Since the total thermal noise in the torsion
mode relative to the flexural mode is fixed, it then follow
that the ratio of the torsional peak noise level to the flexu
peak noise level decreases by a small amount~;10%!, see
Fig. 10~a!.

Next, we consider Case II. We find from Eq.~45! and
~38! of Ref. 3, that Rēand Rēf are inversely proportional to
z and z2, respectively. Thus, the quality factorQf for the
fundamental flexural resonance decreases faster than
quality factorQt for the torsional resonance peak, causi
the ratioQt /Qf to increase significantly~by a factor of 2.06
as z increases fromz51 to z55!. This effect alone would
cause the torsional peak noise level to increase relative to
flexural peak noise level. However, in addition to this effe
we observe from Eq.~46! that the ratio of torsional to flex-
ural vacuum frequencies increases linearly withz. From this
latter observation, it follows that as the torsional resona
peak shifts to higher frequencies relative to the flexural pe
the relative peak noise level of the torsional resonance
tend to decrease. This competing effect dominates the ab
quality factor effect, leading to a significant reduction in t
ratio of the peak noise levels, as demonstrated in Fig. 10~a!.

Case III is similar to Case II above. Again, from Eq.~45!

and Eq.~38! of Ref. 3, we find that Rēand Rēf are inversely
proportional toz andz2, respectively. Similarly, the ratio o
torsional to flexural vacuum frequencies again increases
early with z. For Case III, however, we also find thatT̄ is
inversely proportional toz. This variation inT̄ has the effect
of modifying the quality factor for both the torsional an
flexural resonance peaks, increasing the ratio of quality f
tor Qt /Qf to be greater than that observed in Case II~the
ratio now increases by a factor of 2.15 asz is increased from
z51 to z55!. As in Case II, the effect of increasing th
torsional resonance peak relative to the flexural resona
peak dominates the quality factor effect. However, since
ratio of the quality factors is slightly larger for Case III tha
for Case II , the decrease in the ratio of peak noise levels
Case III is slightly less than for Case II, as is observed in F
10~a!.

Similar trends to those in gases are observed for a c
tilever immersed in liquid, see Fig. 10~b!. Interestingly, how-
ever, the ratio of the peak noise levels is significantly sma
than the corresponding result in gas. This phenomenon
be understood by first noting that the peak noise level of
fundamental flexural mode in liquid is near its minimu
value for the values of Rēf considered. This is certainly no
true for the fundamental flexural mode in gas, where
peak noise level greatly exceeds its minimum value. This
because the quality factor of the cantilever in liquid is ne
unity, whereas in gas the quality factor greatly exceeds un
see Figs. 6 and 7 of Ref. 3. For the fundamental torsio
mode, however, the quality factor in both gas and liquid
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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greater than unity, indicating that the peak noise levels
both mediums exceed their minimum values, see Figs. 7
8. This indicates that the decrease in the peak noise leve
the fundamental torsional mode is greater than that for
fundamental flexural mode as the cantilever moves from
to liquid. It then follows that the ratio of the peak nois
levels of torsional to flexural vibrations will be smaller
liquid than in gas.

In summary, we find that the fundamental torsional pe
noise level is an order of magnitude smaller than the fun
mental flexural peak noise level for immersion in ga
whereas in liquid, this difference increases to two orders
magnitude.

V. CONCLUSIONS

We have presented a general theoretical model for
frequency response of a cantilever beam executing torsi
vibration in a viscous fluid. This model is applicable to
cantilever beam of arbitrary cross section that is excited
an arbitrary driving torque, and immersed in a fluid of ar
trary viscosity and density. the principal assumptions imp
mented in its formulation are that the cantilever leng
greatly exceeds its width, the amplitude of vibration is sm
and the fluid is incompressible in nature. All these assum
tions are typically satisfied in practice.

The model presented here complements and extend
previous formulation of Sader,3 which was derived explicitly
for a cantilever beam undergoing flexural vibration in a v
cous fluid. The main findings of this study are commensur
with those of Ref. 3. In particular, it was found that flu
viscosity becomes increasingly important as the dimens
of the cantilever are reduced. For AFM cantilevers, this c
have a dramatic effect on the torsional frequency respo
In addition, the analogy with the response of a SHO
torsional vibrations was examined, and found to be va
when dissipative effects in the fluid are small, in line with t
finding for flexural vibrations.

Due to its significance to AFM measurements, the c
of a cantilever excited by a thermal driving force was stud
in detail and explicit formulas and numerical results we
presented for the thermal noise spectrum. In so doing,
relationship between the thermal noise spectra due to flex
and torsional vibrations was also examined. Most sign
cantly, it was found that the peak noise levels of torsio
vibrations are at least an order of magnitude smaller t
those of flexural vibrations.

Finally, we note that combination of the results presen
in this article with those in Ref. 3 enables the combin
frequency response due to flexural and torsional motion to
calculated. Since no other motion can be detected using
AFM normally, this then enables the complete frequency
sponse of AFM cantilever beams to be calculated. This
be done in ana priori fashion, from knowledge of the ma
terial and geometric properties of the cantilever and the
cosity and density of the fluid. These results are theref
expected to be of significant value to the design and ap
cation of AFM cantilever beams.
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APPENDIX A

In this Appendix, the hydrodynamic load on an infinite
thin and infinitely long rigid beam~i.e., a flat blade!, that is
immersed in a viscous fluid and executing infinitesima
small torsional oscillations about its major axis, is calcula
numerically. This is performed using the boundary integ
formulation of Tuck.27 Since this special case was not co
sidered explicitly in Ref. 27, a brief outline of the analysis
given here.

For such a beam, the normal component of the veloc
at its surface is given byV(y,t)5V0ye2 ivt, whereV0 is the
angular velocity, whereas the tangential component of
surface velocity is zero. The coordinate system is as
scribed in Fig. 1.

Tuck27 showed that the Fourier-transformed Navie
Stokes and continuity equations can be recast formally
the following integral equation for the pressure differen
Dp between top and bottom surfaces of the beam,

E
21

1

DP~j!L~2 iAi Reuj2j8u!dj5j8, ~A1!

where DP(j)5hV0Dp(y) is the dimensionless pressu
difference,j52y/b, Re is the Reynolds number as given
Eq. ~2!, and the kernel functionL(z), is defined by

L~z!52
1

2p

d2

dz2 @ ln~z!1K0~z!#, ~A2!

whereK0 is a modified Bessel function of the third kind.26

We outline the method of solution for Eq.~A1! below.
The hydrodynamic torque per unit length,Mhydro, acting

on the beam can be determined, onceDP(j) is known, using
the following expression:

Mhydro52
hV0b2

4 E
21

1

DP~j!jdj. ~A3!

To calculate the hydrodynamic functionG~v!, we refer to Eq.
~9!, from which we obtain the following normalization:

Mhydro52
p

8
ivrb4V0G~v!. ~A4!

Equating Eqs.~A3! and~A4! then gives the required expres
sion for the hydrodynamic function in terms of the dime
sionless pressure differenceDP(j)

G~v!5
1

2p i ReE21

1

DP~j!jdj. ~A5!

Equation~A1! was solved forDP(j) using the numeri-
cal quadrature scheme described in Ref. 27; this recast
~A1! into a system of linear equations which were th
solved using matrix techniques. The numerical solution
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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DP(j) was then substituted into Eq.~A5! to obtain the re-
quired hydrodynamic functionG~v!, the numerical results o
which are given in Fig. 3.

We note that the hydrodynamic function of a beam
arbitrary cross section can be computer using the gen
technique developed by Tuck.27

APPENDIX B

We now calculate the low and high Reynolds numb
asymptotic behavior of the hydrodynamic function,G~v!,
i.e., Re→0 and Re→`, respectively.

1. Low Reynolds number limit „Re\0…

In the limit as Re→0, the kernel of Eq.~A1! can be
expanded formally to give26

L~2 iAi Reuj2j8u!5
1

4p
$ lnuj2j8u1C1

2 i Re~j2j8!2~ 3
8lnuj2j8u1C2!%

1O@Re4ln(Re)#, ~B1!

whereC1 andC2 are defined as

C15 ln~2 iAi Re!1 1
21g2 ln~2!,

~B2!
C25 3

8ln~2 iAi Re!2 11
321

3g
8 2 3

8ln~2!,

andg is the Euler constant.26 Next, we expand the pressur
as

P~j!5P0~j!1ReP1~j!1•••. ~B3!

Substituting Eqs.~B2! and ~B3! into Eq. ~A1!, and equating
terms of equal order in Re, gives the followingO~1! integral
equation:

E
21

1

P0~j!~ lnuj2j8u1C1!dj54pj8, ~B4!

andO~Re! equation,

E
21

1

P1~j!~ lnuj2j8u1C1!dj

5 i E
21

1

P0~j!~j2j8!2~ 3
8lnuj2j8u1C2!dj. ~B5!

Differentiating Eq.~B4! with respect toj8, we obtain

E
21

1 P0~j!

j2j8
dj524p, ~B6!

which has the following exact solution32

P0~j!52
4j

A12j2 . ~B7!

Differentiating Eq.~B5! with respect toj8, and using Eq.
~B7!, we find that the exact solution to theO~Re! integral
equation is32

P1~j!52
4iC2j

A12j2 . ~B8!
Downloaded 28 Nov 2002 to 128.250.6.244. Redistribution subject to A
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r

Hence, we obtain the following expression for the press
distribution as Re→0:

P~j!52
4j

A12j2 ~11 i Re C21••• !. ~B9!

Substituting Eqs.~B2! and ~B9! into Eq. ~A5! gives the re-
quired low-frequency asymptote of the hydrodynamic fun
tion, as Re→0

G~v!5
i

Re
2

3

8
ln~2 iAi Re!, Re→0. ~B10!

2. High Reynolds number limit „Re\`…

The limit as Re→` corresponds to immersion in an in
viscid fluid. In this case, we expect the pressure to be c
tinuous at the edges of the beam and antisymmetric ove
top and bottom faces. We therefore seek a solution to
~A1! that satisfies the conditionP~61!50.

As Re→`, the kernel of Eq.~A1! can be expanded to
give26

L~2 iAi Reuj2j8u!52
1

2p iRe~j2j8!2

1O~Re21/4e2ARe!. ~B11!

Substituting Eq.~B11! into Eq. ~A1!, we then obtain

E
21

1 P~j!

~j2j8!2 dj522p i Re j8. ~B12!

Integrating by parts and using the property thatP(61)50,
we find

E
21

1 P8~j!

j2j8
dj522p i Re j8, ~B13!

which has the bound solution32

P~j!5 i Re jA12j2. ~B14!

Substituting Eq.~B14! into Eq. ~A5! then gives the high-
frequency asymptote of the hydrodynamic function
Re→`.

G~v!5
1

16
, Re→`. ~B15!

In addition, we expect the boundary layer in this high-R
limit to contribute a term toG~v! which behaves like
iC/ARe, whereC is some real constant. In principle, th
constant could be obtained by taking higher-order terms
the expansion of the kernel, Eq.~B11!, and using integral
transform techniques.33 Rather than formally deriving this
constant using this approach, which poses a formidable c
lenge, we use a simple nonlinear least-squares fitting a
rithm on the imaginary component of the high-Re numeri
data, which suggestsC'0.41. This value is used in formu
lating the empirical expression for the hydrodynamic fun
tion, Eq. ~21!.
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