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The frequency response of a cantilever beam is strongly dependent on the fluid in which it is
immersed. In a companion study, SaflerAppl. Phys84, 64,(1998] presented a theoretical model

for the flexural vibrational response of a cantilever beam, that is immersed in a viscous fluid, and
excited by an arbitrary driving force. Due to its relevance to applications of the atomic force
microscope/AFM), we extend the analysis of Sader to the related problem of torsional vibrations,
and also consider the special case where the cantilever is excited by a thermal driving force. Since
longitudinal deformations of AFM cantilevers are not measured normally, combination of the
present theoretical model and that of the companion study enables the complete vibrational response
of an AFM cantilever beam, that is immersed in a viscous fluid, to be calculate@0G2 American
Institute of Physics.[DOI: 10.1063/1.151231]8

I. INTRODUCTION present. This gap in the literature is particularly significant in
application to the AFM, where torsional deflections are rou-
The frequency response of a cantilever beam can be drainely measured*~° Consequently, in this article we extend
matically affected by the properties of the fluid in which it is the analysis of Ref. 3 to account for torsional vibratidhs.
immersed, as illustrated by numerous theoretical and experive do not consider the case of longitudinal deformations,
mental studies.™* Whereas calculation of the frequency re- since this cannot be measured normally in the AFM. Com-
sponse in vacuum can be performed routinely for many canbining the theoretical models for flexural and torsional defor-
tilever beams of practical intere$tanalysis of the affects of mations presented here and in Ref. 3, respectively, thus en-
immersion in fluid poses a formidable challenge. To alleviateables the calculation of the complete frequency response for
this problem and greatly simplify the analysis, it has beenaFM cantilever beams immersed in viscous fluids.
commonly assumed that the fluid can be treated as being We commence our investigation by examining the gen-
inviscid in naturet®*’ This simplifying assumption is valid eral case of a cantilever beam of arbitrary cross section that
for cantilevers of macroscopic size, i.e., approximately 1 mis excited by an arbitrary driving force. Using this general
or greater in length, where excellent agreement betweeformulation, we then consider some specific cases that are of
theory and experiment has been demonstrated. particular relevance in practice. One case we examine is that
Recently, it was established that a uniform reduction ofwhere dissipative effects can be considered small. As in Ref.
the cantilever dimensions reduces the validity of the inviscid3, we rigorously prove that the analogy with the response of
assumptiori. Indeed, for cantilevers of microscopic size, a simple harmonic oscillatofSHO) is valid in such cases,
such as atomic force microscop&FM) cantilevers that are  and we derive explicit expressions for the quality factor and
approximately 10Qum in length, fluid viscosity can greatly resonant frequency in fluid. Importantly, we recover the well-
affect their frequency response. In Ref. 3, Sader presentedi@own formula due to CHufor immersion in an inviscid
rigorous theoretical model for the frequency response of carfiuid, when the fluid viscosity is neglected. In combination
tilever beams that are undergoing flexural vibrations and imwith this investigation, we also present a detailed examina-
mersed in viscous fluids, which is of particular relevance totion of a cantilever beam that is excited by a thermal driving
applications of the AFM2 A comparison of this model with  force, i.e., by Brownian motion of the fluid molecules, since
detailed experimental measurements on AFM cantileverghis is of fundamental importance to the AF®IDetailed
was subsequently performed, which demonstrated the validesults are given for cantilevers with rectangular geometries
ity and accuracy of the theoretical model for cantilevers im-and a comparison is made with the frequency response for
mersed in both gas and liquid. flexural vibrations. These results are expected to be of value
Importantly, cantilever beams also exhibit torsional andio the users and designers of AFM cantilevers.
longitudinal vibrations about and along their major axis, re-
spectively. However, a theoretical model for the frequency
response of cantilever beams immersed in viscous fluids, thﬁt
exhibits these modes of deformation, and knowledge and un-
derstanding of the physical processes involved, is lacking at We begin by reviewing the assumptions to be imple-
mented in the present theoretical model. These assumptions
dauthor to whom correspondence should be addressed; electronic maifi€ identical to those used in Ref. 3, where a more detailed
jsader@unimelb.edu.au discussion can be found. The problem under consideration is
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FIG. 1. Schematic illustration of a cantilever beam of rectangular CrossFIG. 2. Schematic illustration of a deformed cantilever beam of rectangular

section showing dimensions and the coordinate system. The thickness of fEoss section indicating the deflection angiex,t) due to an applied torque

beam ish. The origin of the coordinate system is located at the center ofPer unit lengthm(x,t).
mass of the cross section of the beam at its clamped end.

where p and » are the density and viscosity of the fluid,
hat of i b ibrating i . fuid h respectively, andw is a characteristic radial frequency of
that of a cantilever beam vibrating in a viscous fluid. A sche~, a1 vibration. Importantly, viscosity can be neglected
matic illustration of a cantilever beam of rectangular cross,an Re=1. For cantilevers of macroscopic size, this condi-

section Is given in Fig. 1. We stress, however, that the theog, jg satisfied, and explains the good experimental agree-
retical model to be presented also holds for cantilever beamr?]ent found in Ref. 2. However. for cantilevers of micro-

of arbltra}ry Cross sechgn. ) scopic size executing torsional vibrations, such as AFM
In this study, we will assume the following: cantilevers, Re-‘O(10). This in turn indicates that viscous

(1) The cantilever beam is composed of a linearly elasticeffects in the fluid can be significant and should be included
material and has a uniform cross section over its entirdn any analysis.

length;
(2 Iv?cir:ebr-]%th of the cantilevel is much greater than its |, THEORY
(3) The amplitude of torsional deflections is much smallerA- General theoretical model
than any geometric length scale of the bedm; _ We now present a general theoretical model for the tor-
(4) Internal (structura) dissipative effects in the cantilever sjona vibration of a cantilever beam immersed in a viscous
are negligible in comparison to those in the fluid; fluid and excited by an arbitrary driving force.
(5) The fluid is incompressible in nature. The equation governing the deflection angle of a canti-

. . e . lever beam undergoing torsional deformation about its major
All these assumptions are typically satisfied in practi€é- axis 9217 going ]

nally, we shall only consider torsional vibrations about the
major axis of the cantilever. GK #p(x,1) P P(x,t)
We note that the above assumptions are also imple- 2~ gx2  Pe'p™ 42

mented in the inviscid formulation due to Chior a rectan-

gular cantilever

N 3mpb
32p:h

where w; and w,, are the torsional resonant frequencies in

fluid and vacuum, respectively, is the density of the fluid,

pc is the density of the cantilever, afdandh are the width

and thickness of the cantilever, respectively. At this stage, wi

note that good agreement of Eg) with experimental mea-

surements on cantilevers of macroscopic size has been dem-

onstrated previousK.However, as discussed above, a uni- ¢

form reduction in the dimensions of the cantilever increases $(0H)=0, ox x=1=0. )

the effects of viscosity on the frequency response. Since we are primarily interested in the frequency response

To examine the effect of viscosity, it is appropriate to . L .
consider the Reynolds number of the flow. Noting that thedue to torsional vibration of the beam, we take the Fourier

dominant length scale in the flow is the widbhof the can- transform of Eq.(3) to obtain

=m(x,t), 3)

where ¢(x,t) is the deflection angle about the cantilever’s

major axis(see Fig. 2, G is the shear modulus of the canti-

lever,K is a geometric function of the cross sectf8it>?%p,
' (1) its density,L its length,l, its polar moment of inertia about
the axis of rotatiot???t is time, andm(x,t) is the applied
torque per unit length along the beam. The spatial variable
is dimensionless, having been scaled by the length of the
cantilever beam, i.exe(0,1). The appropriate fixed-free
Boundary conditions for a cantilever clamped at the origin

w; —1/2

Wyac

tilever, a consequence of assumpti@ it then follows that GK d?®(x|w) T B
the appropriate Reynolds number R&is T2 a2 TP ®(x|l0)=M(xw), (5
u pwb? where the Fourier transform of any functiaft) is denoted
Re= pp (2 by
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. B2 A 2

X(w)= J wX(t)e'“tdt. (6) dq;(—;jw)+A2(w)<i>(x|w)zfdrive(xm), (13
andw is the radial frequency. The appropriate boundary conwhere
ditions for ®(x|w) are the Fourier-transformed version of

Eq. (4). Alw)=

_ Next, we decompose the applied torque per unit length, 2 Wyaca 8pclp
M(x|®), into two contributions: a hydrodynamic torque per  To determine the frequency response due to an arbitrary
unit length,M,,4.(X| @), due to loading of the surrounding driving torquet 4ye(X| @), We solve Eq(10) using the theory
fluid, and a driving torque per unit lengtM ge(X| @), i.e.  of Green’s function&' to obtain

|\A/l(x|w):'\A/lhydro(x|w)+l\A/Idrive(X|w)- (7)

4

iy pb

112
(1-1— F(w)) . (14

- 1 R

A D)= [ G00K )l )b 19
The hydrodynamic torque per unit lengthl g X| ), is 0
found by solving the Fourier-transformed equations of mo-where the appropriate Green’s function is
tion for the fluid

i : sefA(w)]
—iwpl=—VP+ V%, V.0=0, 8 COxXlo)==—305
whered is the velocity fieldP is the hydrodynamic pressure, codA(w)[1—X' T}siMA(w)X], O=x<x'<1
andp and » are the fluid density and viscosity, respectively. X . .
p ant u! 'Y and VISCOStty, Fespectively. [cos{A(w)[l—x]}sw[A(w)x’], 0<x'<x<1

The nonlinear convective inertial term is neglected in Eq.
(8), a direct consequence of assumpti@nin Sec. Il. Fur- (16
thermore, assumptiof?) in Sec. Il indicates that the velocity
field U varies much faster over the width of bedmthan it
does over the length. It is therefore clear that the velocity
field at any position along a cantilever of large but finite
aspect ratio I(/b) is well approximated by that for an infi-
nitely long rigid cantilever, that is executing torsional oscil-
lations of the same amplitude at that position. Consequentlyg. Hydrodynamic function

Equation(15) is the required result and gives the tor-
sional frequency response of the cantilever beam immersed
in a viscous fluid and excited by an arbitrary driving force.

it follows that M pyaioX| @) has the general form In order to calculate the frequency response using Eq.
. - A (15), we require an expression for the hydrodynamic func-
M phyard X| @) = — §w2pb4F(w)(®X|w), (9 tion I'(w). As discussed in Sec. Ill Al'(w) is obtained by

solving Eq.(8) for an infinitely long rigid beam whose cross

whereI'(w) is the “hydrodynamic function,” a dimension- section is identical to that of the cantilever under consider-
less complex-valued function obtained by solving B).for ~ ation. Here, we consider two cases of practical interest,
motion of the rigid beam described above. The hydrody-namely, cantilevers of circular and rectangular cross section.
namic function depends on the cross section of the cantile- An analytic expression fofF'(w) for a beam of circular
ver, enabling formulation of the present model for a cantile-cross section is well knowf?,and is given by
ver of arbitrary cross section. This function, which can be ) ) e
calculated either analytically or numerically, depending on = () 20 Kol iRe)
the cross section, will be discussed in Sec. Il B. ere Re iReK,(—i\iRe'

Substituting Eqs(7) and(9) into Eq. (5), we obtain

17

where Re is defined in E@2), b refers to the diameter of the

d2<i>(x| w)  pew?l pL2 mpb* . beam and the subscript circ indicates a circular cross section.
w2 ek 11t 8.l I'(o) |P(xX|w) The functionsk, and K, are modified Bessel functions of
A op the third kind?®
=tyrive(X| @), (10 Unfortunately, there does not exist an analytical expres-

sion for the hydrodynamic function of a beam of a rectangu-
lar cross section undergoing torsional oscillation. At this
- B stage, we point out that the hydrodynamic loading on a rect-
Larive( X| @) = GK M arive(X| @) (12) angular beam of finite thickness is well approximated by that
) o ] ] of an infinitely thin beam, provided its thicknekss much
is the scaled driving torque. Using the expression for thesmaier than its widttb. This approximation simplifies the
natural frequency 2°f the fundamental mode of torsional Vi-ynaiysis considerably and is used in the present study. Even
bration in vacuunt; so, formulating an analytical solution for this geometry still
=~ [GK poses a formidable task. Therefore, to overcome this diffi-
\/—I, (12 culty, we implement the boundary integral technique of
Pe Tuck?” which enables us to calculafw) numerically, the
the elastic properties of the cantilever beam can be implicitlyesults of which are presented in Fig. 3. For details of this
removed from Eq(10) to give calculation, see Appendix A.

where
2

C‘)vac,lzz
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N . . beam, that is valid for all Re, by interpolating the numerical

T (w) Hydrodynamic Function results presented in Fig. 3 while satisfying the appropriate
[w) asymptotic limits in Eq(18). This is achieved using a non-
linear least-squares fitting procedure on the numerical data
obtained using the boundary integral technique of Ref. 27.
The resulting analytical expression for the hydrodynamic
function for the rectangular beam is then given by

[ recl @) =T (@) +iTi(0), (20
where

0.0001 0.01 1 100 10000 5Re-15In(Re)+8
Re [rw)= 80(Ret+ 1)

1000

10

0.1

X (4.179 50-0.252 6%

FIG. 3. Hydrodynamic functio'(w) for an infinitely thin rectangular can- 2 3 4
tilever. The subscripts andi refer to the real and imaginary components, +2.883 08°—0.086 8G~+0.338 37

respectively. Asymptotic solutions are shown as dashed lines. 5 6
+0.03318°+0.018 84°)(1—2.276 5%

2_ 3 4
It is apparent from Fig. 3 that the imaginary component +2.101737-0.11365"+0.3498%

of I'(w) is much larger than the real component for<®e +0.03779°+0.018845) 1,

This contrasts to the hydrodynamic function for a rectangular

beam executing flexural oscillatioAswhere the real and 041 1

) ) o ) IN(w)=|——=—+ =|%(0.824 94-0.677 OF
imaginary components df(w) are similar magnitude for all JRe Re

Re<1. This difference in behavior leads to a marked differ-

2 3 4
ence between the flexural and torsional frequency responses +0.4115G7-0.167 487+0.048 97

at low Re, as will be demonstrated in Sec. IV. —0.011 0%°+0.001 48%)(1—0.729 62
To validate the accuracy of this numerical solution for
I'(w), and to assist in formulating an analytical expression, +0.406 63%—0.165 1%°+0.049 07%*
we now examine the low and high Re asymptotic behavior of —0.011 16°+0.001 48%) 1, (21)

the hydrodynamic function; the derivation of which is pre- . . .
sented in Appendix B. These asymptotes, which are dis@re the real and imaginary components of the hydrodynamic

played as dashed lines in Fig. 3, are given by function, respectively, and=log;o(Re).
) Although this analytical expression fdf (@) is ap-
o Eln(—i iRe), Re—0 proximate, it has the correct asymptotic behavior as-Re
Re ’ and Re~x, and is accurate to within 0.1% for both the real
P @) = 1 ' (18) and imaginary components over the entire range of Re
16 Re— shown in Fig. 3.

where the subscript rect refers to a beam of a rectangular
cross section. Comparing this to the asymptotic behavior of. Thermal driving force

Tare(w) for the beam of a circular cross sectftn, We now consider the case of a cantilever beam driven by

2i o thermal motion of the fluid molecules, and explicitly derive
ﬁa_ln(_l iRe), Re—0 the thermal noise spectrum due to torsional vibrations.
I )= i , (19 First, we note that thermal excitation results in a driving
\ﬁ Re_ torque that is stochastic in nature and independent of the
Re spatial positionx. Therefore, the driving torque can be sim-

it is clear that the hydrodynamic functions for beams of rect-p”ﬁed to give

angular and circular cross sections have similar low Re be-  tyo(X| @) =tgive( ®)- (22
havior heir asymptoti havior for large val fRei . . - L
avior, yet their asymptotic behavior for large values of Re SAssumlng the cantilever is in thermal equilibrium with its

very different. Specifically, as Rec, the hydrodynamic : . L
. . . surroundings, we can then invoke the equipartition theorem,
function for the beam of circular cross section goes to zero, . . :
. . which states that the expectation value of the potential en-
whilst for a rectangular beam, it approaches a constant value

This contrasts to the case of flexural oscillatidnghere the ,?hrg?/n?;e:sgrmoiz_f_to\:\lsr'](;?::(v'ti);ag%ﬂzr?nuas;rgz i?)%il{;:]tthe
same asymptotic behavior is observed in both limits for rect- : 9y ’ B .
. andT is the absolute temperature. This enables us to calcu-

angular and circular beams. o o
. . late the stochastic driving torques exciting each mode of the
Consequently, the approximate equivalence betweegantilever

rectangular and circular geometries utilized in Ref. 3 in de- . .
riving an approximate analytical expression i) cannot To proceed, we note that the deflection of the cantilever
n be decomposed into the undamped mbdes

be used here. Instead, we construct an empirical analyticé:la
formula for the hydrodynamic function for the rectangular Yn(X)=sin(kpX), (23
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wherex,=(2n—1)w/2,n=1,2,...,. Using the property that where the subscriptrefers to the spectral density. Substitut-
these modes form an orthogonal basis*ég. ing Eq.(33) into Eq.(31) and solving fort,(w)|2 gives

27TkBT
k¢K§f6°|an(w')|2dw’ '

1=

(24) ta(w)|2= (34)

1
i(X)y;(x)dx= ,
Jo 707i() {0, otherwise

and that each mode of vibration is driven by a stochasticince all the vibrational modes are uncorrelated, substitution
torque whose magnitude is dictated by the equipartition theg?f EQ. (34) into Eq. (25) yields the required result

rem, it then follows that the rotation angfe(x can be o 2
expressed as o) |<i>(x|w)|2:27TkBT lan(w) Y2(X).
. ST oKy i1 kS an(w)]Pde’ "
D(x|w)= 2 Ty(w)an(@) ya(x) (25 %
Xlw)= th(w)ap(w X), ) L . .
¢ a1 nt @ ¥n This expression is the thermal noise spectrum of the rotation
angle due to excitation by Brownian motion of the fluid mol-
where
ecules.
1. In practice, deflections of AFM cantilevers are com-
a”(w)_zfo Do(X|@) ya(X)dx, (26) monly measured using the optical deflection technique.

- ) . . Hence, the square root of E(B5) is directly comparable
andt,(w) is the stochastic driving torque for timeth mode it experimental results.

of vibration. The function®y(x|w) is obtained by solving
Eq. (15) for a unit driving torquetyve(w) =1, and is given

b
y D. Small dissipative effects
~ 1
q>0(x|w)=A2—{1—co§A(w)x] In the limit as dissipative effects in the fluid become
(@) small, i.e., when the real part &f(®) is much greater than
—siMA(w)x]tarf A(w)]}. (27)  itsimaginary part, the resonance peaks will be very sharp. In

such cases, the thermal noise spectrum in the vicinity of the
n-th resonant peak can be obtained by extracting individual
2 terms out of the infinite series in E(35), i.e.,

Substituting Eq(27) into Eg. (26) and integrating, we find

) A% () Knl’ 28 . bn(X)
o |CD(X|w)|SE‘2—_2, (36)
In order to apply the equipartition theorem, we need to A%(w)— kq
evaluate the expectation value of the potential energy of thﬁ/here
cantilever beam. For a bel%/m executing torsional motion, the 6T 0
potential energy is given kg
bn(X)_<k¢Kﬁf§|an(w,)|2dw’) 7n(x)1 (37)

2
1 GK 1(0¢(x,t)) i 29

U= 2 L Jo IX is a function independent of frequeney

From consideration of the viscous boundary layer on the
ace of the beam, which forms in this linfRe>1), it is
apparent that the hydrodynamic functidi{w) varies as
O(w Y?).%% From Eq.(14), it is then clear that the function

dyn(x))zd A?(w) is dominated by a®(w?) variation. Consequently, in

Since the undamped modes form an orthogonal basis Sl
substituting the inverse Fourier transform of E85) into
Eq. (29) gives the potential energy of theth mode,

dx (30 the immediate vicinity of a resonant pedKw) can be con-

R sidered constant to leading order, and evaluated at the reso-
wherep,(t) is the inverse Fourier transform gf{ w) (). nant frequency of the mode in the absence of dissipative
Equating the expectation value of the potential energy offects, wg,. GeneralizingA(w) to encompass all vibra-
each mode(U,(t)), with the thermal energy 1KZT, we tional modes, and evaluating the hydrodynamic function at

1GK 1
Unt)=5 B0 |

obtain the resonant frequency of tieeth mode,wg ,, we obtain
iKyK3(BA(1) = 2ke T (3D b 12
iRy 2/ 1, mwp i
I | An(@)=rp 1+ g [Ti(wpp) +Hili(wrp)]]
wherek,, is the torsional spring constant of the beam, de- Wvach pclp
fined ag? (38)
GK wherel’ (wg n) andl’j(wg ) refer to the real and imaginary
k¢:T' (32 components of the hydrodynamic function, respectively. It
then follows from Eq(38) that in the limit of small dissipa-
From the definition ofB,(t), it then follows that: tive effects,wr , is given by
1 (= . R 1 7pr4 —1/2
2 _ |2 |2 ’ = R
(BED)= 5 f @) Ean(e)?do’, (33 o~ | T gp Tom) | (39)
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Substituting this expression into E(38) and rearranging,  fects. The other parameter Rea normalized Reynolds num-

we find ber, which relates the importance of inertial to viscous forces
® j\12 in the fluid.
An(‘”):Kn(an)(1+Q_n ' (40) Importantly, using Eqs(12) and (43), Re can be ex-
' pressed in terms of the material and geometric properties of
where the beam
8p.l
Qn:ﬂ-p—_ (41) 4 L n Vpe
I'i(wgn) From Eqgs.(44) and (45), it is then clear that as the dimen-

Substituting Eq.(40) into Eq. (36) and using the property sions of the cantilever are uniformly reduc@dremains con-
that in the limit of small viscous effectsy=wg, In the  stant while Redecreases linearly with the thicknelssThis

vicinity of a resonant peak, we obtain indicates that viscous effects in the fluid become increasingly
24 2,2 1-12 important as the dimensions of the cantilever beam are uni-
ki P(X|w) s 2 RN - . .
————| =|(0?—wi )%+ 5 , (42) formly reduced, in line with the analysis of the flexural
@R nPn(X) s ’ Qn responsé. We present numerical results that examine the

|consequences of this phenomenon below.
In practice, AFM cantilevers are immersed in both gas-
eous and liquid mediums, and we use the paramétey

which is the frequency response of a simple harmonic osci
lator (SHO), with resonant frequencyg , and quality factor

Q,, defined in Egqs(39) and(41) respectively. s o
From Eq.(40), it is clear that dissipative effects in the distinguish beMeen t_hese two cases. In gases an_d liquids, the
values ofT typically differ by three orders of magnitude, due

fluid can be considered small providé€jd>1. In this region, : ) ) . .
the analogy with the response of a SHO is valid, which ito the difference in the density of gas relative to liquid. Con-

identical to the findings for flexural vibratioris. sequently, for AFM cantilevers[~0O(10 ) for gases and
T~0(10) for liquids, which are identical values to those
used in the analysis of the flexural responaélues of Re
for the torsional response, however, are typically an order of

Due to its significance to the AFM, we now present ex-magnitude larger than the corresponding values for the flex-
plicit numerical results for a cantilever beam of a rectangulatral response. The reason for this follows from the relation-
cross section that is excited by a thermal driving force.ship between the fundamental vacuum frequencies of flex-
Throughout, we assume that the thicknbssf the beam is ural and torsional vibrations, which is obtained using Eq.
much smaller than its width, which is the case most often (12) of Ref. 3 and Eq(12) of this paper,
encountered in practice. Even though we only consider can- \/T

1+

IV. RESULTS AND DISCUSSION

L
tilevers with rectangular cross sections here, we emphasize —‘f'i’l=2.1886—

that the theoretical model presented above is applicable to ~“vac1 b
cantilever beams of arbitrary cross sections that are imwhere the superscriptsandf refer to torsional and flexural
mersed in viscous fluids of arbitrary density and viscosity,vibrations, respectively. For typical AFM cantilevens/b

and excited by arbitrary driving forces. ~0(10) and »~0.25. From Eq.(46), we then find that

It is important to note that in practice, expressions forwf,ac‘lw 10wf,ac,1, indicating that viscosity is expected to be

the torsional frequency response presented in the precedirgss important for the torsional response than for the flexural
sections are valid provided the mode numheés not large. response. For AFM cantilevers undergoing torsional vibra-
This restriction arises from the assumption that the cantiletions, we then have ReO(10) for gases and ReO(100)

ver's lengthL greatly exceeds its width. Consequently, we  for liquids, values ten times larger than those for the corre-
restrict our attention to the fundamental mode, and in someponding case of flexural vibration.

(46)

cases, the next harmonic. _ _ Importantly, in the limit as fluid viscosity becomes neg-
For the rectangular beam under consideration, the geqiple, i.e., Re—x, we recover the inviscid result of Chu
metric parameterk, andK are well approximated By from Eqgs.(18), (39) and (43), namely,
bh bh? 37pb) ~ 12
lp=—>, K=—. (43) PR 142220 (47)
12 3 Wyacn 32pch

It then follows from Eqgs(14), (20), and(43), that there exist We shall examine the validity and accuracy of this inviscid
two natural dimensionless parameters that characterize thodel when applied to AFM cantilevers in subsequent re-
problem, sults.
5 In Fig. 4, the torsional frequency response of a rectan-
— pb —pwye b : ; . . L i
=—, Re=————, (44) gular cantilever immersed in gas, in the vicinity of the fun
pch 4_’7 damental resonant peak, is examined. From these results, it is
Physically, the parametéris proportional to the ratio of the clear that as Rés decreased whild is held constant, the
added-apparent mass due to inertial forces in the fluid to theelative shift in the peakresonantfrequencies from vacuum
actual mass of the cantilever, in the absence of viscous efe gas increases, while the quality factor decreases. This is a
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FIG. 4. Normalized thermal spectf=|®(1|0)|%k joac.1/(2ksT) in the  FIG. 5. Normalized thermal specta=| (1] w) |2k ywyac 1/ (2keT) in the
vicinity of the fundamental resonance peak for=Re (-—-); Re=10 vicinity of the fundamental resonance peak for=Ré (——-); Re=100 );
(——); and Re=100(—). The vertical line is the inviscid result E@7). ~ and Re=1000(—). The vertical lines are the inviscid results E47). (a)
Quality factorsQ=Q,, as obtained from Eq(4l) are also given(a) T T=5 and(b) T=20.

=0.005 and(b) T=0.02. .

. _ _ _ _ in Ref. 3 for the flexural response are also observed here.
direct consequence of the increasing effect of viscosity. Inyamely, significant coupling of the first higher harmonic and
practice, this reduction in Ret constant can be realized by the fundamental resonance occurs asi®Reeduced, and the
either a uniform decrease in the dimensions of the cannlevetbeak noise level of the fundamental mode can actually in-

or an increase in its length only. We emphasize that the shift o 556 \yith a decrease in Riis behavior will be examined
in peak frequencies is primarily due to inertial effects in theIn detail below.

fluid, with dissipative effects contributing comparatively To quantify the dependence of the fundamental peak fre-

little, i.e., the peak frequencies are accurately described b&uency and quality factor on RedT, we present numerical
Eq. (39). However, comparing these results with those pre- results for these quantities in Figs. 6 and 7, respectively. The

dicted by the inviscid model, Eq47), which neglects vis- eak frequency is calculated numerically from EGS)
cous effects, it is clear that the inviscid model can lead t quency ' yie u catly 45,
large errors in the peak frequencies. whereas the quality factor is obtained directly from Etf).

Turning our attention to the quality factor, it is evident 't iS evident from Fig. 6 that a decrease in Rea constant
from Fig. 4 of this article, and Fig. 3 of Ref. 3, that the value ofT or an increase iff at a constant Resnhances the
quality factors for the torsional response are S|gnlflcantlyfe|«'=1'ﬂVe shift in the peak frequency from vacuum to fluid.
larger than those of the corresponding flexural response. Thi8hysically, the former case can be realized by uniformly de-
finding is in line with the above prediction that viscous ef- creasing all the dimensions of the cantilever, whereas the
fects in the fluid are indeed less important for torsional vi-latter case corresponds to a uniform increase in the width and
brations. length at fixed thickness. We observe that the peak frequency

Next, we examine the effect of immersing cantilevers inof a cantilever immersed in a liquid is typically much smaller
liquid. Corresponding results for the first two modes of vi- than that of a cantilever immersed in a gas; this is primarily
bration of a cantilever immersed in liquid are presented ina consequence of greater inertial loading in liquids. As Re
Fig. 5. As in Fig. 4, we find that as Ris decreased for a —, the peak frequencies approach values predicted by the
fixed T, the resonance peaks shift to lower frequencies, alinviscid model, Eq(1). Upon comparison of Fig. 6 with Fig.
though the shift is more pronounced due to the increase8i of Ref. 3, it is clear that as Rie reduced at fixed, the
density of liquid relative to gas. We also find that the inviscidpeak frequency of the fundamental mode decreases much
model leads to significant errors for tligpical) values of  more rapidly for the torsional response than for the flexural

Re considered. Importantly, all quantitative effects describedesponse for Re1. This is consistent with the marked dif-

Downloaded 28 Nov 2002 to 128.250.6.244. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



J. Appl. Phys., Vol. 92, No. 10, 15 November 2002

1 “TNTTY
Vo Gas
NN T = 0.005, 0.015, 0.045
~ 0l
g 3§
|
- 001
001 01 1 10 100 1000
@ ke
0.1
@p
Oyacg  0.001

0.00001

10 100 1000 10000

®) Re

FIG. 6. Peak frequency,, of fundamental modea) Gas:T=0.005(—);
T=0.015(— —); andT=0.045(——-). Inviscid results as obtained from Eq.
(47) are 1- w,/ wyqc1=0.000 735, 0.002 20, and 0.006 56, respectivily.

); T=15 (——); and T=45 (——-). Inviscid results are
obtained from Eq(47) arew, / wy,.1=0.636, 0.430, and 0.265, respectively.
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FIG. 8. Normalized peak energirp:|&(pr)|§k4,wvac,1/(2kBTLof fun-
damental mode(a)_Gas: T=0.005(—); T=0.015(— —); and T=0.045
(=—9). (b) Liquid: T=5 (—); T=15(——); and T=45 (——).

ference in the hydrodynamic functions for the two cases at

small values of Reas discussed in Sec. Il B, c.f., Fig. 3
with Fig. 1 of Ref. 13.

The quality factors of the fundamental resonance peaks,
Q=Q,, obtained from Eq(41), are presented in Fig. 7. As
expected, the quality factor decreases asiskeeduced at
fixed T. We emphasize that these results give quantitative
information about the shape of the resonant peak wQen
>1, for it is in this region that the analogy with a SHO is
derived formally. ForQ=0O(1), however, the analogy with
the response of a SHO is not valid. Nonetheless, such values
of Q indicate significant broadening of the resonance peaks.
Finally, we note that the current model predicts a nonzero
peak frequency for all values of Rm line with the predic-
tions for flexural vibrations. However, the flexural reso-
nance peaks are much sharper than the torsional peaks for
Q=0(1) an example of which can be seen by comparing
the Re=10 curve in Fig. B) of this article with the Re-1
curve in Fig. 4b) of Ref. 3.

Due to its importance to noise considerations in AFM
measurements!® we now examine the peak thermal energy
of the fundamental mode of torsional vibration, the results of
which are presented in Fig. 8, and have been calculated using
Eqg. (35). Note that there exists a distinct minimum in the
peak energy. Interestingly, the value of Rbere this occurs
coincides with a quality factor o, ~ 1, as calculated from
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Eqg. (41). This phenomenon was also observed for flexural

vibrations® The physical reason for this phenomenon is iden- 0.2 _ Gas
tical to that for flexural vibrations, and consequently the Rep=0.1
reader is referred to Ref. 3 for a detailed discussion. | TTw~__
In many applications, the deflections of AFM cantilevers R o016 |  TTeeal__
are measured using the optical deflection technique. For such ~ T

situations, the complete thermal noise spectrum of a cantile-
ver beam,|SomdX|w)|2, can be obtained by summing the
slope and rotation angle of flexural and torsional deflections,
respectively. Using the theoretical models presented here and
in Ref. 3, and assuming identical sensitivities for flexural and
torsional measurementSwe then obtain

5 3mkgT 2akgT
|Scompﬁx|w)|s: KL2 F(X|a))+ k¢ P(X|w)a (48)

whereF (x|w) andP(x|w) are given in Eq(29b) of Ref. 3 R
and Eq.(35) of this article, respectively, anklis the normal

spring constant.Using Eq.(28) of Ref. 3 and Eq(32) of

this article, Eq.(48) can be reexpressed as

3mkgT
|Scomg Xl @)|2==1 77~ (F(x|w) + (1 +1)P(x|)). o ’ oo %
(49 )
We also define a parameter 0.08
L \/ 1 0.06
)\_B 1+ (50

which is a scaled aspect ratio that is proportional to the ratio 0.04

of the vacuum frequencies of torsional and flexural vibra-
tions, c.f., Eq.(46). This parameter will be utilized in the 0.02
following discussion.

We now investigate the relationship between the peak
noise levels of the fundamental resonances for flexural and (©)
torsional vibrations, i.e., the ratio of (I—lv)P(x|w:)) to
F(x|w{)), where w}) and w{) refer to the fundamental peak
frequencies of the torsional and flexural modes, respectively.
Results for rectangular cantilever beams immersed in gas and
liquid are presented in Fig. 9, as a function of the parameters
Re , T, and\. The subscript in Re refers to the normalized R
Reynolds number for flexural vibrations, which is defined in 0.06
Eq. (37) of Ref. 3. Note that in all cases, the flexural peak
noise level exceeds the torsional peak noise level, and this
difference rises a& is increased. 0.02

It is of interest to examine the physical significance of
these results, and consider three separate cases: (d A

(I.) A uniform reduction in the dlmenS|ons_of the canti- FIG. 9. Ratio of peak noise levels of torsional and flexural vibratien,

lever, corresponding to reducing Rat constanfl and\; =(1+v)P(1|wp)/F(1|w}), where v}, and w}, refer to the fundamental

(Il.) An increase in the length only of the cantilever, peak frequencies of the torsional and flexural modes, respectively.(@as:
which corresponds to reducing Reut increasing\ at con- ~ R&=0.1; (b) Re=1; {T=0.005(); T=0.015(——); andT=0.045
stantT: (—=—2)}. Liquid: (c) Rg=10; (d) Re=100; {T=5 (—); T=15 (— —);

(111.) A reduction in the width only of the cantilevenr- andT=45 (-}
responding to reducing Rand T, while increasing\.

To examine the effects of these three cases, we introdudé as ({L,b,h), whereas in Case Il we have. (b/Z,h).

a geometric scaling parametérwhich is used to vary the Increasing the single parametgrthus enables us to impose
dimensions of the cantilever in each case comparatively. lia uniform variation in all three cases, and make a simulta-
Case |, the dimensions are varied &s{,b/{,h/{), in Case neous comparison.
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0.24 ] Fig. 7(a) of this article and Fig. @) of Ref. 3, we then
\ I observe that the ratio of the quality fac@y for the torsional
\ ] response to the quality fact@y; for the flexural response, is
AN approximately constant asis increased; the ratio of quality
02 \\ | factors Q;/Qs decreases by-10% as{ is increased from
R RN {=1to {=5. This indicates that the torsional resonance peak
AN | flattens only slightly faster than the flexural peak with in-
creasing{. Since the total thermal noise in the torsional
I s mode relative to the flexural mode is fixed, it then follows
0.16 Gas | S that the ratio of the torsional peak noise level to the flexural
‘‘‘‘‘ peak noise level decreases by a small am@w0%), see
1 2 3 4 5 Fig. 10a).
¢ Next, we consider Case Il. We find from E@5) and
@) (38) of Ref. 3, that Reand Re are inversely proportional to
¢ and 2, respectively. Thus, the quality fact@; for the
fundamental flexural resonance decreases faster than the
quality factorQ, for the torsional resonance peak, causing
the ratioQ,/Q; to increase significantlyby a factor of 2.06
as { increases front=1 to {=5). This effect alone would
cause the torsional peak noise level to increase relative to the
flexural peak noise level. However, in addition to this effect,
we observe from Eq46) that the ratio of torsional to flex-
ural vacuum frequencies increases linearly witi-rrom this
latter observation, it follows that as the torsional resonance
peak shifts to higher frequencies relative to the flexural peak,
. the relative peak noise level of the torsional resonance will
1 2 3 4 5 tend to decrease. This competing effect dominates the above
b quality factor effect, leading to a significant reduction in the
(b) E ratio of the peak noise levels, as demonstrated in Figp)10
FIG. 10. Ratio of peak noise level of torsional and flexural vibrati@n, Case lll is similar to Case Il above. Again, from E45)
=(1+ V)P(llw})/F(lle) as a function of the geometric scaling param- and Eq.(38) of Ref. 3, we find that Rand Re are inversely
eter'zj, wherew,, and “’»fo refer to the f_undamental peak frequencies of the proportional to and {2, respectively. Similarly, the ratio of
torsional and flexural modes, respectively. Case ) Case lll-—3:and 4, 0171 46 flexural vacuum frequencies again increases lin-
Case lll(——). (a) Gas: At{=1, we have Re=1, T=0.005, and\=5. (b) . . .
Liquid: At /=1, we have Re= 10, T=5, and)—5. garly with . For .Case I, hpwevgr,.we.al_so find thatis
inversely proportional t@. This variation inT has the effect
of modifying the quality factor for both the torsional and
r{Iexural resonance peaks, increasing the ratio of quality fac-
gas and liquid, that is characterized by the following initial tor. Qt/Qf,to be greater than that ObseTV?‘d in Casettie
({=1) parameter set: Gda—5, Rq =1 and?=0.005' Li- ratio now increases by a factor of 2.15&is mgreaseq from
. — ' ? P (=1 to {=5). As in Case ll, the effect of increasing the
uid (\=5, Rg=10, andT=5). We remind the reader thatis  (yrsjonal resonance peak relative to the flexural resonance
independent of the medium in which the cantilever is im-peay dominates the quality factor effect. However, since the
mersed, and that ReARe; . We then vary the dimensions of ratio of the quality factors is slightly larger for Case Il than
the cantilever in accordance with the above three cases, i.gor Case Il , the decrease in the ratio of peak noise levels for
we increase the geometric parameteand examine the ratio  Case Il is slightly less than for Case Il, as is observed in Fig.
of the fundamental peak noise levels of torsional to flexurat o(a).
vibrations. The results of this study are given in Fig. 10,  Similar trends to those in gases are observed for a can-
where we find that the ratio of the peak noise levels of tor+ilever immersed in liquid, see Fig. (). Interestingly, how-
sional to flexural vibration decreases always. However, thewer, the ratio of the peak noise levels is significantly smaller
rate at which this decrease occurs, and the mechanisms ithan the corresponding result in gas. This phenomenon can
volved, differ in all three cases, the reasons for which shalbe understood by first noting that the peak noise level of the
now be discussed. We consider the case of immersion in gd@gndamental flexural mode in liquid is near its minimum

in detail first. _ _ value for the values of Reconsidered. This is certainly not
In Case I, the ratio of the torsional and flexural vacuumy e for the fundamental flexural mode in gas, where the
frequencies is independent gfsee Eq(46). Therefore, the  eak noise level greatly exceeds its minimum value. This is
fundamental peak frequencies of torsional and flexural vibrapecayse the quality factor of the cantilever in liquid is near
tions in gas are approximately fixed relative to one anotherunity’ whereas in gas the quality factor greatly exceeds unity,
In addition, both Reand Re decrease at the same rate with see Figs. 6 and 7 of Ref. 3. For the fundamental torsional
increasingl, namely, inversely proportional © Comparing  mode, however, the quality factor in both gas and liquid is

0.05

R 0.03

0.01

As an example, we consider a cantilever immersed i
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to liquid. It then follows that the ratio of the peak noise gratefully acknowledges the support of an Australian Post-
. o . .~ graduate Award.

levels of torsional to flexural vibrations will be smaller in
liquid than in gas.

In summary, we find that the fundamental torsional peak®PPENDIX A

noise level is an order of magnitude smaller than the funda- |, this Appendix, the hydrodynamic load on an infinitely

mental flexural peak noise level for immersion in gas,ihin and infinitely long rigid beanti.e., a flat bladg that is
whereas in liquid, this difference increases to two orders of,mersed in a viscous fluid and executing infinitesimally

This research was supported by the Particulate Fluids

magnitude. small torsional oscillations about its major axis, is calculated
numerically. This is performed using the boundary integral
formulation of Tuck?’ Since this special case was not con-
V. CONCLUSIONS sidered explicitly in Ref. 27, a brief outline of the analysis is

given here.

We have presented a general theoretical model for the For such a beam, the normal component of the velocity
frequency response of a cantilever beam executing torsionatt its surface is given by(y,t)=Qqye !, whereQ, is the
vibration in a viscous fluid. This model is applicable to aangular velocity, whereas the tangential component of the
cantilever beam of arbitrary cross section that is excited byurface velocity is zero. The coordinate system is as de-
an arbitrary driving torque, and immersed in a fluid of arbi-scribed in Fig. 1.
trary viscosity and density. the principal assumptions imple-  Tuck’’ showed that the Fourier-transformed Navier—
mented in its formulation are that the cantilever lengthStokes and continuity equations can be recast formally into
greatly exceeds its width, the amplitude of vibration is small,the following integral equation for the pressure difference
and the fluid is incompressible in nature. All these assumpAp between top and bottom surfaces of the beam,
tions are typically satisfied in practice. 1

The model presented here complements and extends the f AP(&)L(—iVi Rdé—¢'|)dé= ¢, (A1)
previous formulation of Sadéwhich was derived explicitly -1

for a cantilever beam undergoing flexural vibration in a vis-where AP(£)= 7QoAp(y) is the dimensionless pressure
cous fluid. The main findings of this study are commensuratgjitference,£=2y/b, Re is the Reynolds number as given in

with those of Ref. 3. In particular, it was found that fluid Eq. (2), and the kernel functiot(z), is defined by
viscosity becomes increasingly important as the dimensions

2

of the cantilever are reduced. For AFM cantilevers, this can 1d
' L(z2)=— — In(z) +Ky(2)], A2
have a dramatic effect on the torsional frequency response. 2 2w d_ZZ[ (2)+Ko(2)] "2

In addition, the analogy with the response of a SHO foryherek , is a modified Bessel function of the third kiRé.

torsional vibrations was examined, and found to be vaIidWe outline the method of solution for EGAL) below.
when dissipative effects in the fluid are small, in line with the The hydrodynamic torque per unit lengt,, .0, acting
ydro»

finding for flexural vibrations. on the beam can be determined, onde(¢) is known, using
Due to its significance to AFM measurements, the casgne following expression:

of a cantilever excited by a thermal driving force was studied

in detail and explicit formulas and numerical results were I

presented for the thermal noise spectrum. In so doing, the hydro™ g f_lA P(£)¢de. (A3)

relationship between the thermal noise spectra due to flexural . .

and torsional vibrations was also examined. Most signiﬁ-T0 calculate.the hydrodynamlc functl.cﬂﬁw), we r(.afer.to Eq.

cantly, it was found that the peak noise levels of torsionaﬁg)’ from which we obtain the following normalization:

vibrations are at least an order of magnitude smaller than T

those of flexural vibrations. Mhyaro= ~ gl wpb*Qol (o). (A4)
Finally, we note that combination of the results presented

in this article with those in Ref. 3 enables the combinedEduating Eqs(A3) and(A4) then gives the required expres-

frequency response due to flexural and torsional motion to b&©n for the hydrodynamic function in terms of the dimen-

calculated. Since no other motion can be detected using trionless pressure differendeP(¢)

AFM normally, this then enables the complete frequency re-

sponse of AFM cantilever beams to be calculated. This can I'(w)=

be done in ara priori fashion, from knowledge of the ma-

terial and geometric properties of the cantilever and the vis- Equation(Al) was solved forAP(¢) using the numeri-

cosity and density of the fluid. These results are thereforeal quadrature scheme described in Ref. 27; this recast Eq.

expected to be of significant value to the design and applif{Al) into a system of linear equations which were then

cation of AFM cantilever beams. solved using matrix techniques. The numerical solution for

1
f AP(§)&dé. (A5)

2 Re)_4
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AP(&) was then substituted into EAS) to obtain the re-
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Hence, we obtain the following expression for the pressure

quired hydrodynamic functioh(w), the numerical results of distribution as Re-0:

which are given in Fig. 3.

We note that the hydrodynamic function of a beam of
arbitrary cross section can be computer using the general

technique developed by Tuék.

APPENDIX B

i 3 e
We now calculate the low and high Reynolds number 1(@)=gg~ gln(—ivi Re), Re-0.

asymptotic behavior of the hydrodynamic functidi(w),

i.e., Re—»0 and Re-x, respectively.
1. Low Reynolds number limit  (Re—0)

In the limit as Re-0, the kernel of Eq(Al) can be
expanded formally to giv&

1
L(=iViRdé—&'])= —{In|¢é-¢'[+C,

—i Re(¢—¢)2(3In[¢—¢'|+Cy)}

+ O[Ré€In(Re)], (B1)
whereC,; andC, are defined as
C,=In(—ivi Re)+3i+y—In(2),
Co=An(—i T RY— B+ 2 3n(2), B2)

and y is the Euler constarff Next, we expand the pressure

as
P(£)=Po(£) + RePy(§)+---. (B3)

Substituting Eqs(B2) and (B3) into Eq. (A1), and equating
terms of equal order in Re, gives the followi@gl) integral
equation:

1
f lPo(é)(lnlf—f’l+Cl)d§=4wg',

(B4)
and O(Re) equation,

1
f_1P1<§><In|§—§'|+c1>dg

1
:iJ_lpo(f)(rf—5')2(§|n|§—§'|+C2)d§- B9

Differentiating Eq.(B4) with respect taZ’, we obtain
1 Po(§)
—16-¢

which has the following exact solutidh

Po(€)=— s
e

Differentiating Eq.(B5) with respect to¢’, and using Eg.
(B7), we find that the exact solution to th&(Re) integral
equation i8?

dé=—4m, (B6)

(B7)

4iC ¢
Pi(§)=—- N (B8)

4 .
P(f):——,l_—gz(l‘Fl ReC2+---). (Bg)
Substituting Egs(B2) and (B9) into Eg. (A5) gives the re-
quired low-frequency asymptote of the hydrodynamic func-
tion, as Re»0

(B10)

2. High Reynolds number limit  (Re—x)

The limit as Re-o corresponds to immersion in an in-
viscid fluid. In this case, we expect the pressure to be con-
tinuous at the edges of the beam and antisymmetric over its
top and bottom faces. We therefore seek a solution to Eg.
(Al) that satisfies the conditioR(*=1)=0.

As Re—x, the kernel of Eq(A1l) can be expanded to
give?®

1
L(—ivi Rd§—§/|):—m

+O(Re Vg~ Re),
Substituting Eq(B11) into Eq.(Al), we then obtain

1 P(¢)
————dé=—27i Reé'.
g gypdeT AT Res
Integrating by parts and using the property tR4t-1)=0,
we find

(B11)

(B12)

LR )
=y dé=—27i Re¢’, (B13)

which has the bound soluti¢h
P(&)=i Re&{1— &2 (B14)

Substituting Eq.(B14) into Eq. (A5) then gives the high-
frequency asymptote of the hydrodynamic function as
Re—oo,

1

MNw)=75 Re-=. (B15)

In addition, we expect the boundary layer in this high-Re
limit to contribute a term tol'(w) which behaves like
iC/\Re, whereC is some real constant. In principle, this
constant could be obtained by taking higher-order terms in
the expansion of the kernel, EqB11), and using integral
transform technique® Rather than formally deriving this
constant using this approach, which poses a formidable chal-
lenge, we use a simple nonlinear least-squares fitting algo-
rithm on the imaginary component of the high-Re numerical
data, which suggest8~0.41. This value is used in formu-
lating the empirical expression for the hydrodynamic func-
tion, Eq.(22).
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