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General scaling law for stiffness measurement of small bodies
with applications to the atomic force microscope
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A general scaling law connecting the stiffness and dissipative properties of a linear mechanical
oscillator immersed in a viscous fluid is derived. This enables the noninvasive experimental
determination of the stiffness of small elastic bodies of arbitrary shape by measuring their resonant
frequency and quality factor in flui@typically air). In so doing, we elucidate the physical basis of

the method of Sadeet al. [Rev. Sci. Instrum.70, 3967 (1999] for determining the stiffness of
rectangular atomic force microscope cantilevers, and discuss its applicability. The validity of the
derived general technique is demonstrated by calibrating atomic force microscope cantilevers with
complex geometries, and its implications to small bodies in general are discus2805@merican
Institute of PhysicgDOI: 10.1063/1.1935133

I. INTRODUCTION area of significant research for more than ten years, with
numerous techniques being develoﬁé]a.These range from
Force measurements at the nanometer scale are routinglysthods that utilize a static load to determine the stifffidss
performed using many techniques, which include opticaly methods that monitor the dynamic deflection properties of
tweezerd, surface forces apparatflsand atomic force o cantilevet® 12 Recently, Saderet al? proposed a
microscopy’ Arguably, the atomic force microsCopdFM)  ya1hod to determine the s;;ring constastiffness of rect-
has emerged as the most versatile of these force-measuri qular AFM cantilevers in a completely noninvasive fash-

tzzhr;q:egndqggy;?sb'I't};gonoapnecﬁtgtg ng;%rlmclcl)?:::gi 1?] n by measuring the resonant frequency and quality factor
vacuou Vi Wi patl gfthe cantilever in fluid(such as ajrand from the knowl-

atomic-scale imaging resolution. Indeed, the AFM has foun Lage of its plan-view geometry. This method was derived

application in many areas of science and technology, rangingsing the results of a theoretical model for the frequency
from the measurement of capillary forces at the microscopic

scalé down to quantification of the mechanical properties Oflrespo?setlof tﬁf”‘”z"exef bea_ms m:rn;er;etd n VIStCOUS Ifi'ﬁ|ds.
single molecules at the nanoscale. mportantly, this technique is restricted to a rectangular can-

Fundamental to all such techniques is the ability to Ca”_FiIever the length of which greatly exceeds its width, which

brate their force-sensing components, and thus enable colil turn greatly exceeds its thickness, and is uniform along its
version of the measured observables into an interactioff"tr¢ length. The physical principle underpinning this
force. While this is trivial for instrumentation that relies on Method is yet to be described. "
macroscopic devices, such as the springs used in the surface !N this article, we show that the method of Saeeal.”
forces apparatu’sthose that use microscopic devices require'S & subset of a general experlmental technique gnablmg the
special consideration since standard macroscopic techniquéliffness of any small elastic body to be determined. In so
are often not suitable. This is nowhere more evident than ifloing, we elucidate the underlying physical basis of the
the determination of the stiffness of microcantilevers used ifnethod of Sadeet al,*” discuss its applicability to rectan-
the AFM, which are some 100 microns in length. Impor-gular cantilevers in the presence of nonidealities, and provide
tantly, microfabrication techniques often produce structuredis rigorous extension to small elastic bodies of arbitrary
the material properties of which deviate significantly from shape. To demonstrate the validity of this general technique,
bulk values® Consequently, the use of bulk data to determinethe calibration of AFM cantilevers with complex geometries
the mechanical characteristics of such structures is often nds investigated, since this can also be achieved using inde-
justified. pendent methods. We emphasize, however, that while such

Stiffness determination of microcantilevers has been aA\FM cantilevers do not offer operational advantages over

simple rectangular cantilevet;*® the ability to calibrate

dauthor to whom correspondence should be addressed; electronic maifheir stiffness enables the accommodation of all current and
jsader@unimelb.edu.au future designs.
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More generally, microfabrication constraints often cause 1 ( 1 PEgiss ) pLawg n
nonoptimal geometries to be adopted in micromechanical de- 1= Py .+ Re= : 4
p g p pngg{ 277 aAZ w=wp Y

vices. Consequently, the ability to experimentally determine

the stiffness of small bodies of arbitrary shape is of funda-The latter parameter Re is commonly referred to as the Rey-
mental practical importance. nolds numbet?

From Buckingham'’s theorer,it then follows that there
must exist a functiod such that

Il. THEORY 1 1 FPE. L2
== d2|ss , PLo®Wr -0, (5)
27 A" |z 7

We now derive the theoretical formalism for the general PLS“)E!
technique. To begin, we consider a linear harmonic oscillatO(N
with a single degree of freedom, the damping force of whichp
is proportional to its velocity. If the oscillator is excited at its
radial resonant frequenayg, then the quality facto® of the

oscillator is defined to be 1 PEgiss

27 IA?

hich relates the energy dissipated per cy€lgsto all other
arameters. Solving E@5) for the first argument and rear-
ranging gives

= pL3w30(Re), (6)
Estored R
Q= 27— . (1)

Eiss where the dimensionless functiél(Re) is to be determined.
(A):(A)R

Substituting Eq(6) into Eq.(2) then gives
For oscillations of amplitudd, the energy stored in the _ 3 2
oscillatorEgoeq= 3k A% wherek is the spring constant of the k= pLoHRORQ. ™
oscillator. Egiss is the energy dissipated per oscillation cycle. Equation(7) is the result we seek, and relates the stiffness of
We note that for such a linear oscillator, the energy storedhe body to its resonant frequency, quality factor, geometry,
and the energy dissipated per cycle are both proportional tand the properties of the fluid. We emphasize that the dimen-
the square of the oscillation amplitude It then follows  sionless functionf2(Re) also implicitly depends on the ge-

from Eq. (1) that the spring constark of the oscillator is ometry and deflection function of the body, which are also

related to its dissipative properties by dimensionless. This function can be determined either theo-
retically or experimentally, as we shall discuss below. Impor-

_ if92Ediss Q ) tantly, once it is determined for a body of given size as a

\ 2 aA w=og ' function of Re, the function then holds universally for bodies

of the same geometry, but different size.

Since Egss is proportional to the square of the oscillation ~ The resonant frequenayg and quality factorQ can be
amplitudeA, Eq. (2) is independent oA. measured by fitting the frequency response of the body to the

Next, consider an elastic body immersed in a viscougesponse of a simple harmonic oscillatot® This implicitly
(Newtonian fluid, such as air, and for energy dissipation to requires the damping coefficient of the oscillator to be inde-
occur predominantly in the fluid; for small bodies such aspendent of frequency. Since the hydrodynamic damping co-
AFM cantilevers, this is the practical case. Provided the oseéfficient of an arbitrary body is frequency dependent in gen-
cillation amplitude of the body is far smaller than any of its eral, but only weakly so! it follows that the fundamental-
geometric length scales, the hydrodynamic force exerted bynode resonance peak must be sharp and narrow so that the
the fluid will be a linear function of the amplitude since the damping coefficient is constant in the neighborhood of the
nonlinear convective inertial term in the Navier-Stokespeak, i.e., the quality factor must greatly exceed unity. This
equation is negligible in such cases. Consequently, the er@lso enables the motion of the body to be described by a
ergy dissipated will be dependent on the square of the anfinear harmonic oscillator with a single degree of freedom, as
plitude, as required. It then follows that the energy dissipatedias been assumed. This fundamental condition that the qual-
per oscillation cycle is only dependent on the fluid viscosityity factor greatly exceed unity must, therefore, also be satis-
7, fluid densityp, square of the amplituda, length scale of fied by Eq.(7) in general. This condition can be relaxed in
the oscillatorl,, its radial resonant frequenay in fluid, its ~ cases where the damping coefficient can be determined to be
mode shape at resonance, and geometry. Note that the ldBglependent of frequency, e.g., this is expected when the

two properties are dimensionless quantities. Reynolds number Re is far smaller than unity.

The functional form ofEg for such a body, in relation We restrict our discussion in this article to the fundamen-
to these parameters, can be rigorously determined using di@l mode of the body, although we note that Eg). can be
mensional analysi¥. It follows that the product applied to any oscillation mode.

m.n 1 aZEdlSS
LPed[ — =g (3) Il. RESULTS AND DISCUSSION
PRT0R| o0 an2 !
“TOR A. Rectangular AFM cantilevers
must be dimensionless, whare n, p, andq are constants to Equation(7) is to be compared against the formula of
be determined. Equating dimensions in E8). leads to two  Saderet al,*? which we now briefly review. Under the as-

independent dimensionless groups: sumptions that the cantilever {§ of rectangular geometry,
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the thickness of the cantilever is not uniform over its entire
length, in violation of conditiorfiv) above, but the deflection
(a) function is approximately the same as that of a uniform can-
tilever, then the energy dissipated per cycle of both cantile-
vers will have approximately the same functional form.
This establishes that E() holds for cantilevers of uni-
form and nonuniform thickness, provided the deflection
L A/b' function of the cantilever is approximately the same as that
of a cantilever of uniform thickness. Importantly, thickness
variations exert only a weak effect on the fundamental-mode
deflection function, which, in general, closely resembles that
(b) of a cantilever under static load at its end tip, i.e., a mono-
tonically increasing displacement as a function of distance
from the clamped end.
A In addition, this explains the recent experimental result
\ of Greenet al,*® which demonstrated that E¢B) also holds
for cantilevers that are loaded with spheres at their end tips.
L In that study, it was found that the validity of E) in
application to a sphere-loaded cantilever depends only on the
size of the sphere, not its mass. Significant discrepancies
were observed only when the size of the sphere became com-
o ) ) S parable to the width of the cantilever, in which case ).
(i) immersed in a viscous fluidiii) its lengthL greatly  nqerestimated the true spring constant. This phenomenon
exceeds its widttp, which in turn greatly exceeds its thick- ¢an now be easily understood. First, we note that the deflec-
ness,(iv) uniform along its entire Iengt?z, an) its quality  on function of an unloaded cantilever of uniform thickness
factor greatly exceeds unity, Sadet al-“ derived the for- g approximately identical to that of the same cantilever with
mula an arbitrary point mass added to its endigt therefore
k=0.1906pb’LTj(wr) w3Q, (8)  follows that Eq.(8) is also valid for sphere-loaded cantile-

) ) ) vers, provided the added sphere does not affect the energy
which connects the normal spring constkif the cantilever  gjssipated per cycle, which is certainly true when the sphere
to its fundamental-mode resonant frequengyand quality  giameter is far smaller than the cantilever width, i.e., the
factor Q in fluid, lengthL, width b, fluid viscosity 7, and  pydrodynamic length scale. However, when the sphere diam-
fluid densityp. A schematic of a rectangular cantilever show- eter hecomes comparable to or exceeds the width of the can-
ing the dimensions is given in Fig. 1. The functibpis the  jlever, it affects the flow around the cantilever, enhancing
imaginary part of the hydrodynamic function derived in Ref. ha energy dissipated per cycle. Consequently, in such a case,
13, and depends only on the Reynolds number Re. An analq=q_(10) will underestimate the true energy dissipated, lead-
gous result for the torsional spring constant is presented ith to an underestimation of the spring constant by @3,

Ref. 20. S _ as observed in Ref. 20.
Importantly, Eq.8) is identical in form to Eq(7), which

establishes that the method of Sadeal?is a subset of the
more general class of method defined by Ef). Since the B. Experimental determination of  Q(Re)
length scale of the hydrodynamic flow around an oscillating
rectangular cantilever is given by its width, we chodsge
=b/2 (in line with Ref. 13. It follows that

FIG. 1. Schematic illustration showing the plan-view dimensions ¢)a
rectangular cantilever and(a) V-shaped cantilever.

We now describe how the dimensionless functidiiRe)
can be determined for a body of arbitrary geometry and com-
position. In principle Q(Re) can be calculated theoretically
9) for any body by solving the coupled fluid—structure interac-
tion problem and making use of E). However, this poses
a formidable challenge in all but the simplest geometries,
thus necessitating the use of numerical techniques. Nonethe-
less, sinc)(Re) depends only on the Reynolds number Re
and the geometry of the body, it can be easily determined
experimentally for a single body by adjusting Re, as we shall
discuss below. Oncé€)(Re) is found for that single body,
then it holds true for all such bodies with the same geometry,
These findings have important practical consequencegven if the size and composition are varied, provided the
as we shall now discuss. For a thin cantilever, i.e., one whoseéeflection function and mode are identical.
width and length greatly exceed its thickness, the energy To undertake this experimental procedure, we first re-
dissipated in the fluid is only dependent on its plan-viewquire the stiffness of the single body for which the dimen-
geometry and deflection function, since the flow around thesionless functiorf)(Re) is to be determined; this can be de-
cantilever is not influenced by its thickness. Consequently, ifermined either theoretically or by using an independent

Q(Re) = 1.525tL—)ri(wR),

where Repb’w/(47). This analysis also establishes that the
term 0.1906pb?LTj(wg) wd in Eq. (8) is connected directly to
the energy dissipated per cydg,,, namely,

ié’zEdiss

L5y = 0.1906pb2L T (wg) 2. (10)

ﬂ):ﬂ)R
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TABLE |. Dimensions of the cantilevers used in this studicrolever, 14359 o -
Veeco, USA. Geometric parameters are shown in Fig. 1. All cantilevers are i °
coated with gold with a nominal thickness of 50 nm by the manufacturer. . °
The total thickness of the cantilevers is nominally u®. Spring constants E: 14.25 °
k measured using the method in Ref. 12. ~
BN )
Cantilever (um) (um) (um) (Nm™
3 10 30 100 300 1000
R 200 20 "' 0.020 @) pressure (torr)
\A 320 215 21 0.013
\A 220 150 21 0.038
g0 ®
70 °
60 [
. . 50 o
experimental technique(Re) can then be evaluated as a Y " °
function of Re by immersing the body in gas, such as air, i ® .
adjusting the gas pressure, and making use of(Bq.This .
. . [ ]
allows for the determination df2(Re) over many orders of
magnitude in Re, since gas density is proportional to pres- 3 1030 10(1 300 1000
sure; gas viscosity is independent of pressure and the reso- (b) pressure (tor)

nant frequenpy is typically a very weak function 'of Pressure. - » \easureda resonant frequenciefy=wg/ (277 and (b) quality
We emphasize, however, that this procedure is only validaciors of a rectangular cantileveras a function of air pressure.
provided the mean free path of the gas does not become

comparable to or larger than the length scale of the body. If

this condition is violated, then the underlying continuum as-  In Fig. 3, we present a comparison of the theoretical
sumption in the analysis will be invalid. solution, Eq.(9), to the experimental measurement(®fRe)

To illustrate the validity of this approach, we presentobtained by substituting the results of Fig. 2 into Etf). It
measurements onractangularAFM cantilever, cantileveR s strikingly evident that measurements and theory show ex-
in Table I[Microlever, Veeco, USA and compare these re- cellent agreement over the entire range of Re presented, thus
sults to the known analytical solution, E(P), for (A(Re).  validating the procedure. In passing, we note that for cases
The stiffness of the cantilever was measured using thevhere the mean free path was larger than the cantilever
method of Sadeet al'? at atmospheric pressure and waswidth, the measured)(Re) underestimated the theoretical
determined to be 0.020 N/m. Choosing the length scale of)(Re), as would be expected since substantial slip is present
the cantilever to be its half width,=b/2, as in Ref. 13, Eqs. at the cantilever surface in such cases.

(4) and(7) then yield the following expressions: To increase Re above the value obtained at atmospheric

) pressure requires the medium surrounding the cantilever to

Q(Re) = 8k R =Pb “R (11) be pressurized. If this is not feasible, then the use of a gas
pb3w§Q’ 47 with a kinematic viscosityy/ p smaller than that of air at 760

Torr will achieve identical results. To illustrate this approach,
The resonant frequenayr and quality factorQ of the can-  the rightmost data point in Fig. 3 was obtained using carbon
tilever were determined by measuring its thermal noise speddioxide, which has a kinematic viscosity approximately half
trum. This was performed using a National Instruments dat@ghat of air at 760 Torr, namely, (7/p)co.=0.83
acquisition(DAQ) card?? amplifying the photodiode signal w105 m2 s, whereas (7l p)ay=1.58% 105 m2 5L All
using a wideband1 MHz) amplifier with a low-frequency ther data points were obtained in air. As is clear from Fig. 3,
roll-off to remove dc noise, and finally carrying out a digital e gata point obtained using carbon dioxide matches the

fast Fourier transform of the signal using theBVIEW — yang optained using air, and shows excellent agreement with
software”” The fundamental resonance peak was fitted to th?he analytical solution

response of a simple harmonic oscill&?ausing a nonlinear
least-squares-fitting procederAEA white-noise floor was in-
cluded in the fitting procedu}%to ensure accurate fits to the
measured data. The gas pressure surrounding the cantilever
was varied by placing the entire AFM into a specially con- 1000

3000

structed bell jar, adapted so the photodiode voltage and AFM g

control leads could be fed through the base. The bell jar was G 300

evacuated on a vacuum line, and results were obtained for 100

pressures ranging from 760 Tdit atm down to 3 Torr, at

which point the mean free path of the gas became compa- 0003 001 003 01 03 1
rable to the cantilever width. All measurements were per- Re

o .
formed at a temperature.Of 27 °C. Rgsults ShOWII’lg th(—:t mqutG, 3. Dimensionless functiof(Re) for rectangular cantileveR. Mea-
sured resonant frequencies and quality factors as functions Qfrements shown as solid circles. The solid line corresponds to theoretical

air pressure are shown in Fig. 2. result, Eq.(9).
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3000 }€ given in Fig. 4. The length scale of both cantilevers was
taken to be their arm widths, i.d.o=d. A comparison with

1000 theory is not possible, since no analytical solutiorfXdRe)

£ 300 is known for these geometries. Nonetheless, we note that
a . L :
100 Q(Re) for both cantilevers possess similar functional forms
to each other and to that of the rectangular cantilever, cf.
30 Figs. 3 and 4. To aid implementation of these results, an
001003 01 03 1 empirical function forQ)(Re) was fitted to the data and pre-
(a) Re sented in the caption of Fig. 4. Substituting these empirical
fits into Eq. (7) results in explicit formulas for the spring
1000 @ constants of these two types of cantileverahich are valid
300 provided the Reynolds number Re lies within the range
- specified in Fig. 4,
& 100
3 Vl: k= 3.57pd2LRe_0'728+0'00915 In R(%ZRQI (128)
30
10 V2: k= 2.97pd2LRe"°'7°0+°'0215 In Rg)éQ, (12b)
001 003 01 03 1 3
where
(b) Re
pdsz
FIG. 4. Dimensionless functiorf3(Re) for V-shaped cantileversa) V,, (b) Re = : (13)
V,. Measurements are shown as solid circles. The solid lines are correspond- Y

ing fits to the measured data points, with empirical formulas givertapy

((Re) =54.33R 07264000915 I R () ()(Re) = 31.14RE0-100+0.0215 n Re We emphasize that while these formulas were obtained

using single cantilevers, they are universally applicable to
o _ cantilevers with the same geometries, irrespective of their
C. Validation of the general technique composition and thickness. To illustrate this property, below
i we determine the spring constants of the V-shaped cantile-
We now demonstrgte the vaI|FI|ty -Of the new gen'eralvers of Greenet al® using Egs.(12) and compare these
technique by applying it to the calibration of AFM cantile- o : X X
vers with complex geometries, since the stiffness of thes&eSUlts 1o the spring constants determined in Ref. 20. Impor-
bodies can be easily determined by independent means. T the cantilevers used by Greehal™ have identical
cantilevers used have V-shaped geomeffe¥ and thus plan-view geometries to the present cantilevers, but are not
preclude direct usage of E(®), which is valid for rectangu- ¢0ated with gold. Consequently, Eqd.2g and (12b) are
lar cantilevers only. These cantilevers were chosen as te§{SC expected to hold for these cantilevers, as discussed
cases, since they were on the same chip as the rectangul%l?oye' All _measurem_ents were perfqrmed at 760_Torr. Note
cantilever used in the previous section, allowing for the im-thatif cantilevers of different geometries are used in place of
mediate and accurate determination of their spring constant@ose specified in this article, then the dimensionless function
using the independent approach discussed in Sec. IV of Ref}(Re) should be re-evaluated.
12. The geometries, dimensions, and spring constants of " Table Il we present the results for the resonant fre-
these V-shaped cantilevers are given in Fig. 1 and Table fuencies, quality factors, and spring constakjg, of t?ﬁ
These cantilevers are composed of silicon nitride and ardncoated V-shaped cantilevers, as measured by (e
gold coated with a nominal thickness of 50 nm by the manu Ve also evaluate the spring constants of these cantilevers by
facturer. directly substituting their resonant frequencies and quality
To begin, the dimensionless functidd(Re) of these factors into Eqs.(12). These newly measured spring con-

cantilevers was measured using the experimental procedufé2nts, denoteé,e,, are to be compared e, where ex-

detailed in the previous section, the results of which ar&ellent agreement is found, thus illustrating the validity of
the new method. We emphasize that the resonant frequencies

and quality factors of the coated and uncoated cantilevers

TABLE II. Table showing the comparison of spring constants for uncoateddhc.f(_:‘r significantly(see Table N yet the new method accom-
V-shaped cantilevers used by Greenal. (Ref. 20 k., refers to results ’

presented in Ref. 20, whereks,, corresponds to the new method obtained modates these dlﬁgrences natu.ra"y'

using Egs(12) and fr=wg/ (27). These results are to be compared against Next, we modified the spring constants of the gold-
the gold-coated cantilevers specified in Table I: Cantile¥gr (f; coated cantilevers used in this study in order to assess the
=6.29 kHz,Q=15.1), cantileverV, (fr=14.17 kHz,Q=26.0; spring con-  validity of the method for changing cantilever stiffness. A

stants are identical to the uncoated cantilevers. All measurements are P&imi ; ; ;
imilar, but different, chip from the same wafer was used in
formed at 760 Torr. Properties of airp=1.18 kgm® and 7=1.86 P

X 105 kgmisL place of the one from which the results in Fig. 4 were ob-
tained. The spring constants were modified by depositing

fr Korev Knew additional gold using a sputter coater; this modified the can-

Cantilever (kHz) Q (Nm™) (Nm™) tilever mass and rigidity. Gold of identical thickness was
v, 782 10.6 0.013 0.012 erosited on both sidgs of the c.antilever to minimize bgnd—

v, 18.77 191 0.038 0.040 ing that would, otherwise, result if gold were only deposited

on one side. Since the rectangular and V-shaped cantilevers
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TABLE IIl. Table showing the comparison of spring constants for varying TABLE |V. Table showing the effect of added mass on the validity of the
additional gold-coating thicknesk, refers to the results obtained using new method, Eq(12b), for the uncoated V-shaped cantilever in Ref. 20 with
the previous method in Ref. 12, wherels,, corresponds to the new geometry identical to cantilevev,. The measured spring constant of the
method, Eqs(12) and fg=wg/(27). For the rectangular cantilev&, the cantilever is 0.039 N/m. Tungsten spheres of varying diameter were used.
new and previous methods are identical, since the dimensionless functioAll measurements were performed at 760 Torr. Properties of @ir:
Q(Re) is known theoretically. The nominal thickness of all unmodified can- =1.18 kg m® and 7=1.86x 107> kgm*s™%.

tilevers is 0.6um. All measurements are performed at 760 Torr. Properties

of air: p=1.18 kg m?® and =1.86x 10> kg m*s™%. Sphere diameter fr Knew
(pnm) (kHz) Q (Nm™)
Gold thickness fr Korev Knew
Cantilever (nm) (kHz) Q (Nm?%)  (Nm? 0 17.99 194 0.039
7 11.92 33.0 0.038
R 0 14.05 23.8 0.020 B 9 10.59 37.9 0.037
R 120 11.36 38.2 0.025 10 9.35 43.2 0.036
R 342 10.57 67.3 0.040 12 6.92 56.5 0.032
R 430 10.87 81.3 0.050 14 5.52 66.6 0.028
V, 0 6.27 15.7 0.013 0.013
A 120 508 255  0.016 0.017 ) ) )
v, 342 481 433 0026 0027 Sured for the unloaded cantilever will remain unchanged and
A 430 488 540  0.032 0034 the method valid. As for the rectangular cantilevers studied

in Ref. 20 using the method of Sader al,*? we find that

Va2 0 1427240 0038 0035  aqding a sphere to the V-shaped cantilever reduces the mea-
A 120 1160 451  0.046 0.050 : ;

sured spring constant. Nonetheless, the new method remains
Ve 342 l0.94 783 0.075 0.080 valid, provided the sphere diameter is not comparable to the
V, 430 11.38  90.0  0.093 0.097 P P P

hydrodynamic length scale of the cantilever, i.e., its arm
width. This is as expected, since a sphere comparable to the
) ) hydrodynamic length scale can significantly modify the hy-
are adjacent to each other on the same chip, we were able §pogynamic load, and thus enhance the energy dissipated per
determine the thickness of gold deposited and the change ¥y cle by the cantilever. This leads to EG2b) underestimat-
stiffness of all cantilevers from the measurements of the rectng the true energy dissipated per cycle, and consequently an

angular cantilever. The stiffness of the rectangular cantileveyngerestimation of the spring constant by the new method.
was measured using EB), and the thickness of gold was

determined using Ed3) of Ref_. 12, which only requ_ires the v coNCLUSIONS
resonant frequency and quality factor of the cantilever and
the density of gold. The stiffness of the adjacent V-shaped We have presented a general scaling law enabling the
cantilevers could then be determined using the approach imeasurement of the stiffness of small bodies of arbitrary ge-
Sec. IV of Ref. 12; the thickness of gold on all cantileversometry and composition. All that is required is the determi-
was identical due to the proximity of the cantilevers. nation of the dimensionless functida(Re), which may be
Results of this comparison are shown in Table 1l for theachieved theoretically or experimentally on a single body by
rectangle and two V-shaped cantilevers. We note that thadjusting the surrounding gas pressure. The resulting dimen-
thickness, mass, and spring constant of all cantilevers argionless functiorf)(Re) will then be valid for all such bodies
modified significantly by the deposited gold. Initially, the of identical geometry, regardless of their size and composi-
resonant frequency decreases due to the increase in matien, provided the energy dissipated is dependent only on the
and eventually increases due to the enhanced stiffness, density and viscosity of the surrounding medium. To illus-
expected. The quality factors of all cantilevers increase astrate the validity of the technique, measurements were per-
gold is deposited. Despite the dramatic changes in resonafarmed on two types of V-shaped AFM cantilevers. The new
frequency, quality factor, and stiffness, the results in Table llitechnique thus extends the method of Sazteal % to smalll
demonstrate the validity of the new method in accuratelyelastic bodies of arbitrary shape, allowing for the noninva-
predicting the change in spring constant of the V-shaped carsive calibration of their stiffness. This is expected to be of
tilevers. value to users of the AFM, and for the general calibration of
Finally, we assess the validity of the new method whensmall-scale mechanical devices and structures.
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