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A general scaling law connecting the stiffness and dissipative properties of a linear mechanical
oscillator immersed in a viscous fluid is derived. This enables the noninvasive experimental
determination of the stiffness of small elastic bodies of arbitrary shape by measuring their resonant
frequency and quality factor in fluidstypically aird. In so doing, we elucidate the physical basis of
the method of Saderet al. fRev. Sci. Instrum.70, 3967 s1999dg for determining the stiffness of
rectangular atomic force microscope cantilevers, and discuss its applicability. The validity of the
derived general technique is demonstrated by calibrating atomic force microscope cantilevers with
complex geometries, and its implications to small bodies in general are discussed. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1935133g

I. INTRODUCTION

Force measurements at the nanometer scale are routinely
performed using many techniques, which include optical
tweezers,1 surface forces apparatus,2 and atomic force
microscopy.3 Arguably, the atomic force microscopesAFMd
has emerged as the most versatile of these force-measuring
techniques due to its ability to operate in ambient, liquid, and
vacuous environments with nanometer spatial control and
atomic-scale imaging resolution. Indeed, the AFM has found
application in many areas of science and technology, ranging
from the measurement of capillary forces at the microscopic
scale4 down to quantification of the mechanical properties of
single molecules at the nanoscale.5

Fundamental to all such techniques is the ability to cali-
brate their force-sensing components, and thus enable con-
version of the measured observables into an interaction
force. While this is trivial for instrumentation that relies on
macroscopic devices, such as the springs used in the surface
forces apparatus,2 those that use microscopic devices require
special consideration since standard macroscopic techniques
are often not suitable. This is nowhere more evident than in
the determination of the stiffness of microcantilevers used in
the AFM, which are some 100 microns in length. Impor-
tantly, microfabrication techniques often produce structures
the material properties of which deviate significantly from
bulk values.6 Consequently, the use of bulk data to determine
the mechanical characteristics of such structures is often not
justified.

Stiffness determination of microcantilevers has been an

area of significant research for more than ten years, with
numerous techniques being developed.7–12 These range from
methods that utilize a static load to determine the stiffness7–9

to methods that monitor the dynamic deflection properties of
the cantilever.10–12 Recently, Saderet al.12 proposed a
method to determine the spring constantsstiffnessd of rect-
angular AFM cantilevers in a completely noninvasive fash-
ion by measuring the resonant frequency and quality factor
of the cantilever in fluidssuch as aird and from the knowl-
edge of its plan-view geometry. This method was derived
using the results of a theoretical model for the frequency
response of cantilever beams immersed in viscous fluids.13

Importantly, this technique is restricted to a rectangular can-
tilever the length of which greatly exceeds its width, which
in turn greatly exceeds its thickness, and is uniform along its
entire length. The physical principle underpinning this
method is yet to be described.

In this article, we show that the method of Saderet al.12

is a subset of a general experimental technique enabling the
stiffness of any small elastic body to be determined. In so
doing, we elucidate the underlying physical basis of the
method of Saderet al.,12 discuss its applicability to rectan-
gular cantilevers in the presence of nonidealities, and provide
its rigorous extension to small elastic bodies of arbitrary
shape. To demonstrate the validity of this general technique,
the calibration of AFM cantilevers with complex geometries
is investigated, since this can also be achieved using inde-
pendent methods. We emphasize, however, that while such
AFM cantilevers do not offer operational advantages over
simple rectangular cantilevers,14–16 the ability to calibrate
their stiffness enables the accommodation of all current and
future designs.
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More generally, microfabrication constraints often cause
nonoptimal geometries to be adopted in micromechanical de-
vices. Consequently, the ability to experimentally determine
the stiffness of small bodies of arbitrary shape is of funda-
mental practical importance.

II. THEORY

We now derive the theoretical formalism for the general
technique. To begin, we consider a linear harmonic oscillator
with a single degree of freedom, the damping force of which
is proportional to its velocity. If the oscillator is excited at its
radial resonant frequencyvR, then the quality factorQ of the
oscillator is defined to be

Q = U2p
Estored

Ediss
U

v=vR

. s1d

For oscillations of amplitudeA, the energy stored in the
oscillatorEstored=

1
2k A2, wherek is the spring constant of the

oscillator.Ediss is the energy dissipated per oscillation cycle.
We note that for such a linear oscillator, the energy stored
and the energy dissipated per cycle are both proportional to
the square of the oscillation amplitudeA. It then follows
from Eq. s1d that the spring constantk of the oscillator is
related to its dissipative properties by

k = SU 1

2p

]2Ediss

]A2 U
v=vR

DQ. s2d

Since Ediss is proportional to the square of the oscillation
amplitudeA, Eq. s2d is independent ofA.

Next, consider an elastic body immersed in a viscous
sNewtoniand fluid, such as air, and for energy dissipation to
occur predominantly in the fluid; for small bodies such as
AFM cantilevers, this is the practical case. Provided the os-
cillation amplitude of the body is far smaller than any of its
geometric length scales, the hydrodynamic force exerted by
the fluid will be a linear function of the amplitude since the
nonlinear convective inertial term in the Navier–Stokes
equation is negligible in such cases. Consequently, the en-
ergy dissipated will be dependent on the square of the am-
plitude, as required. It then follows that the energy dissipated
per oscillation cycle is only dependent on the fluid viscosity
h, fluid densityr, square of the amplitudeA, length scale of
the oscillatorL0, its radial resonant frequencyvR in fluid, its
mode shape at resonance, and geometry. Note that the last
two properties are dimensionless quantities.

The functional form ofEdiss for such a body, in relation
to these parameters, can be rigorously determined using di-
mensional analysis.17 It follows that the product

rmhnL0
pvR

qSU 1

2p

]2Ediss

]A2 U
v=vR

D , s3d

must be dimensionless, wherem, n, p, andq are constants to
be determined. Equating dimensions in Eq.s3d leads to two
independent dimensionless groups:

P ;
1

rL0
3vR

2SU 1

2p

]2Ediss

]A2 U
v=vR

D, Re;
rL0

2vR

h
. s4d

The latter parameter Re is commonly referred to as the Rey-
nolds number.13

From Buckingham’s theorem,17 it then follows that there
must exist a functionH such that

HS 1

rL0
3vR

2SU 1

2p

]2Ediss

]A2 U
v=vR

D,
rL0

2vR

h D = 0, s5d

which relates the energy dissipated per cycleEdiss to all other
parameters. Solving Eq.s5d for the first argument and rear-
ranging gives

U 1

2p

]2Ediss

]A2 U
v=vR

= rL0
3vR

2VsRed, s6d

where the dimensionless functionVsRed is to be determined.
Substituting Eq.s6d into Eq. s2d then gives

k = rL0
3VsRedvR

2Q. s7d

Equations7d is the result we seek, and relates the stiffness of
the body to its resonant frequency, quality factor, geometry,
and the properties of the fluid. We emphasize that the dimen-
sionless functionVsRed also implicitly depends on the ge-
ometry and deflection function of the body, which are also
dimensionless. This function can be determined either theo-
retically or experimentally, as we shall discuss below. Impor-
tantly, once it is determined for a body of given size as a
function of Re, the function then holds universally for bodies
of the same geometry, but different size.

The resonant frequencyvR and quality factorQ can be
measured by fitting the frequency response of the body to the
response of a simple harmonic oscillator.12,18 This implicitly
requires the damping coefficient of the oscillator to be inde-
pendent of frequency. Since the hydrodynamic damping co-
efficient of an arbitrary body is frequency dependent in gen-
eral, but only weakly so,19 it follows that the fundamental-
mode resonance peak must be sharp and narrow so that the
damping coefficient is constant in the neighborhood of the
peak, i.e., the quality factor must greatly exceed unity. This
also enables the motion of the body to be described by a
linear harmonic oscillator with a single degree of freedom, as
has been assumed. This fundamental condition that the qual-
ity factor greatly exceed unity must, therefore, also be satis-
fied by Eq.s7d in general. This condition can be relaxed in
cases where the damping coefficient can be determined to be
independent of frequency, e.g., this is expected when the
Reynolds number Re is far smaller than unity.

We restrict our discussion in this article to the fundamen-
tal mode of the body, although we note that Eq.s7d can be
applied to any oscillation mode.

III. RESULTS AND DISCUSSION

A. Rectangular AFM cantilevers

Equations7d is to be compared against the formula of
Saderet al.,12 which we now briefly review. Under the as-
sumptions that the cantilever issid of rectangular geometry,
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sii d immersed in a viscous fluid,siii d its length L greatly
exceeds its widthb, which in turn greatly exceeds its thick-
ness,sivd uniform along its entire length, andsvd its quality
factor greatly exceeds unity, Saderet al.12 derived the for-
mula

k = 0.1906rb2LGisvRdvR
2Q, s8d

which connects the normal spring constantk of the cantilever
to its fundamental-mode resonant frequencyvR and quality
factor Q in fluid, length L, width b, fluid viscosity h, and
fluid densityr. A schematic of a rectangular cantilever show-
ing the dimensions is given in Fig. 1. The functionGi is the
imaginary part of the hydrodynamic function derived in Ref.
13, and depends only on the Reynolds number Re. An analo-
gous result for the torsional spring constant is presented in
Ref. 20.

Importantly, Eq.s8d is identical in form to Eq.s7d, which
establishes that the method of Saderet al.12 is a subset of the
more general class of method defined by Eq.s7d. Since the
length scale of the hydrodynamic flow around an oscillating
rectangular cantilever is given by its width, we chooseL0

=b/2 sin line with Ref. 13d. It follows that

VsRed = 1.525
L

b
GisvRd, s9d

where Re=rb2v / s4hd. This analysis also establishes that the
term 0.1906rb2LGisvRdvR

2 in Eq. s8d is connected directly to
the energy dissipated per cycleEdiss, namely,

U 1

2p

]2Ediss

]A2 U
v=vR

= 0.1906rb2LGisvRdvR
2 . s10d

These findings have important practical consequences,
as we shall now discuss. For a thin cantilever, i.e., one whose
width and length greatly exceed its thickness, the energy
dissipated in the fluid is only dependent on its plan-view
geometry and deflection function, since the flow around the
cantilever is not influenced by its thickness. Consequently, if

the thickness of the cantilever is not uniform over its entire
length, in violation of conditionsivd above, but the deflection
function is approximately the same as that of a uniform can-
tilever, then the energy dissipated per cycle of both cantile-
vers will have approximately the same functional form.

This establishes that Eq.s8d holds for cantilevers of uni-
form and nonuniform thickness, provided the deflection
function of the cantilever is approximately the same as that
of a cantilever of uniform thickness. Importantly, thickness
variations exert only a weak effect on the fundamental-mode
deflection function, which, in general, closely resembles that
of a cantilever under static load at its end tip, i.e., a mono-
tonically increasing displacement as a function of distance
from the clamped end.

In addition, this explains the recent experimental result
of Greenet al.,20 which demonstrated that Eq.s8d also holds
for cantilevers that are loaded with spheres at their end tips.
In that study, it was found that the validity of Eq.s8d in
application to a sphere-loaded cantilever depends only on the
size of the sphere, not its mass. Significant discrepancies
were observed only when the size of the sphere became com-
parable to the width of the cantilever, in which case Eq.s8d
underestimated the true spring constant. This phenomenon
can now be easily understood. First, we note that the deflec-
tion function of an unloaded cantilever of uniform thickness
is approximately identical to that of the same cantilever with
an arbitrary point mass added to its end tip.21 It therefore
follows that Eq.s8d is also valid for sphere-loaded cantile-
vers, provided the added sphere does not affect the energy
dissipated per cycle, which is certainly true when the sphere
diameter is far smaller than the cantilever width, i.e., the
hydrodynamic length scale. However, when the sphere diam-
eter becomes comparable to or exceeds the width of the can-
tilever, it affects the flow around the cantilever, enhancing
the energy dissipated per cycle. Consequently, in such a case,
Eq. s10d will underestimate the true energy dissipated, lead-
ing to an underestimation of the spring constant by Eq.s8d,
as observed in Ref. 20.

B. Experimental determination of V„Re…

We now describe how the dimensionless functionVsRed
can be determined for a body of arbitrary geometry and com-
position. In principle,VsRed can be calculated theoretically
for any body by solving the coupled fluid–structure interac-
tion problem and making use of Eq.s7d. However, this poses
a formidable challenge in all but the simplest geometries,
thus necessitating the use of numerical techniques. Nonethe-
less, sinceVsRed depends only on the Reynolds number Re
and the geometry of the body, it can be easily determined
experimentally for a single body by adjusting Re, as we shall
discuss below. OnceVsRed is found for that single body,
then it holds true for all such bodies with the same geometry,
even if the size and composition are varied, provided the
deflection function and mode are identical.

To undertake this experimental procedure, we first re-
quire the stiffness of the single body for which the dimen-
sionless functionVsRed is to be determined; this can be de-
termined either theoretically or by using an independent

FIG. 1. Schematic illustration showing the plan-view dimensions of asad
rectangular cantilever and asbd V-shaped cantilever.
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experimental technique.VsRed can then be evaluated as a
function of Re by immersing the body in gas, such as air,
adjusting the gas pressure, and making use of Eq.s7d. This
allows for the determination ofVsRed over many orders of
magnitude in Re, since gas density is proportional to pres-
sure; gas viscosity is independent of pressure and the reso-
nant frequency is typically a very weak function of pressure.
We emphasize, however, that this procedure is only valid
provided the mean free path of the gas does not become
comparable to or larger than the length scale of the body. If
this condition is violated, then the underlying continuum as-
sumption in the analysis will be invalid.

To illustrate the validity of this approach, we present
measurements on arectangularAFM cantilever, cantileverR
in Table I fMicrolever, Veeco, USAg, and compare these re-
sults to the known analytical solution, Eq.s9d, for VsRed.
The stiffness of the cantilever was measured using the
method of Saderet al.12 at atmospheric pressure and was
determined to be 0.020 N/m. Choosing the length scale of
the cantilever to be its half widthL0=b/2, as in Ref. 13, Eqs.
s4d and s7d then yield the following expressions:

VsRed =
8k

rb3vR
2Q

, Re =
rb2vR

4h
. s11d

The resonant frequencyvR and quality factorQ of the can-
tilever were determined by measuring its thermal noise spec-
trum. This was performed using a National Instruments data
acquisitionsDAQd card,22 amplifying the photodiode signal
using a widebands1 MHzd amplifier with a low-frequency
roll-off to remove dc noise, and finally carrying out a digital
fast Fourier transform of the signal using theLABVIEW

software.23 The fundamental resonance peak was fitted to the
response of a simple harmonic oscillator18 using a nonlinear
least-squares-fitting procedure.24 A white-noise floor was in-
cluded in the fitting procedure12 to ensure accurate fits to the
measured data. The gas pressure surrounding the cantilever
was varied by placing the entire AFM into a specially con-
structed bell jar, adapted so the photodiode voltage and AFM
control leads could be fed through the base. The bell jar was
evacuated on a vacuum line, and results were obtained for
pressures ranging from 760 Torrs1 atmd down to 3 Torr, at
which point the mean free path of the gas became compa-
rable to the cantilever width. All measurements were per-
formed at a temperature of 27 °C. Results showing the mea-
sured resonant frequencies and quality factors as functions of
air pressure are shown in Fig. 2.

In Fig. 3, we present a comparison of the theoretical
solution, Eq.s9d, to the experimental measurement ofVsRed
obtained by substituting the results of Fig. 2 into Eq.s11d. It
is strikingly evident that measurements and theory show ex-
cellent agreement over the entire range of Re presented, thus
validating the procedure. In passing, we note that for cases
where the mean free path was larger than the cantilever
width, the measuredVsRed underestimated the theoretical
VsRed, as would be expected since substantial slip is present
at the cantilever surface in such cases.

To increase Re above the value obtained at atmospheric
pressure requires the medium surrounding the cantilever to
be pressurized. If this is not feasible, then the use of a gas
with a kinematic viscosityh /r smaller than that of air at 760
Torr will achieve identical results. To illustrate this approach,
the rightmost data point in Fig. 3 was obtained using carbon
dioxide, which has a kinematic viscosity approximately half
that of air at 760 Torr, namely, sh /rdCO2

=0.83
310−5 m2 s−1, whereas sh /rdair=1.58310−5 m2 s−1. All
other data points were obtained in air. As is clear from Fig. 3,
the data point obtained using carbon dioxide matches the
trend obtained using air, and shows excellent agreement with
the analytical solution.

TABLE I. Dimensions of the cantilevers used in this studysMicrolever,
Veeco, USAd. Geometric parameters are shown in Fig. 1. All cantilevers are
coated with gold with a nominal thickness of 50 nm by the manufacturer.
The total thickness of the cantilevers is nominally 0.6mm. Spring constants
k measured using the method in Ref. 12.

Cantilever
L

smmd
b

smmd
d

smmd
k

sN m−1d

R 200 20 ¯ 0.020
V1 320 215 21 0.013
V1 220 150 21 0.038

FIG. 2. Measuredsad resonant frequenciesfR=vR/ s2pd and sbd quality
factors of a rectangular cantileverR as a function of air pressure.

FIG. 3. Dimensionless functionVsRed for rectangular cantileverR. Mea-
surements shown as solid circles. The solid line corresponds to theoretical
result, Eq.s9d.
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C. Validation of the general technique

We now demonstrate the validity of the new general
technique by applying it to the calibration of AFM cantile-
vers with complex geometries, since the stiffness of these
bodies can be easily determined by independent means. The
cantilevers used have V-shaped geometries,14–16 and thus
preclude direct usage of Eq.s8d, which is valid for rectangu-
lar cantilevers only. These cantilevers were chosen as test
cases, since they were on the same chip as the rectangular
cantilever used in the previous section, allowing for the im-
mediate and accurate determination of their spring constants
using the independent approach discussed in Sec. IV of Ref.
12. The geometries, dimensions, and spring constants of
these V-shaped cantilevers are given in Fig. 1 and Table I.
These cantilevers are composed of silicon nitride and are
gold coated with a nominal thickness of 50 nm by the manu-
facturer.

To begin, the dimensionless functionVsRed of these
cantilevers was measured using the experimental procedure
detailed in the previous section, the results of which are

given in Fig. 4. The length scale of both cantilevers was
taken to be their arm widths, i.e.,L0=d. A comparison with
theory is not possible, since no analytical solution toVsRed
is known for these geometries. Nonetheless, we note that
VsRed for both cantilevers possess similar functional forms
to each other and to that of the rectangular cantilever, cf.
Figs. 3 and 4. To aid implementation of these results, an
empirical function forVsRed was fitted to the data and pre-
sented in the caption of Fig. 4. Substituting these empirical
fits into Eq. s7d results in explicit formulas for the spring
constants of these two types of cantilevers,25 which are valid
provided the Reynolds number Re lies within the range
specified in Fig. 4,

V1: k = 3.57rd2LRe−0.728+0.00915 ln RevR
2Q, s12ad

V2: k = 2.97rd2LRe−0.700+0.0215 ln RevR
2Q, s12bd

where

Re =
rd2vR

h
. s13d

We emphasize that while these formulas were obtained
using single cantilevers, they are universally applicable to
cantilevers with the same geometries, irrespective of their
composition and thickness. To illustrate this property, below
we determine the spring constants of the V-shaped cantile-
vers of Greenet al.20 using Eqs.s12d and compare these
results to the spring constants determined in Ref. 20. Impor-
tantly, the cantilevers used by Greenet al.20 have identical
plan-view geometries to the present cantilevers, but are not
coated with gold. Consequently, Eqs.s12ad and s12bd are
also expected to hold for these cantilevers, as discussed
above. All measurements were performed at 760 Torr. Note
that if cantilevers of different geometries are used in place of
those specified in this article, then the dimensionless function
VsRed should be re-evaluated.

In Table II we present the results for the resonant fre-
quencies, quality factors, and spring constantskprev of the
uncoated V-shaped cantilevers, as measured by Greenet al.20

We also evaluate the spring constants of these cantilevers by
directly substituting their resonant frequencies and quality
factors into Eqs.s12d. These newly measured spring con-
stants, denotedknew, are to be compared tokprev, where ex-
cellent agreement is found, thus illustrating the validity of
the new method. We emphasize that the resonant frequencies
and quality factors of the coated and uncoated cantilevers
differ significantlyssee Table IId, yet the new method accom-
modates these differences naturally.

Next, we modified the spring constants of the gold-
coated cantilevers used in this study in order to assess the
validity of the method for changing cantilever stiffness. A
similar, but different, chip from the same wafer was used in
place of the one from which the results in Fig. 4 were ob-
tained. The spring constants were modified by depositing
additional gold using a sputter coater; this modified the can-
tilever mass and rigidity. Gold of identical thickness was
deposited on both sides of the cantilever to minimize bend-
ing that would, otherwise, result if gold were only deposited
on one side. Since the rectangular and V-shaped cantilevers

TABLE II. Table showing the comparison of spring constants for uncoated
V-shaped cantilevers used by Greenet al. sRef. 20d kprev refers to results
presented in Ref. 20, whereasknew corresponds to the new method obtained
using Eqs.s12d and fR=vR/ s2pd. These results are to be compared against
the gold-coated cantilevers specified in Table I: CantileverV1 sfR

=6.29 kHz,Q=15.1d, cantileverV2 sfR=14.17 kHz,Q=26.0d; spring con-
stants are identical to the uncoated cantilevers. All measurements are per-
formed at 760 Torr. Properties of air:r=1.18 kg m−3 and h=1.86
310−5 kg m−1 s−1.

Cantilever
fR

skHzd Q
kprev

sN m−1d
knew

sN m−1d

V1 7.82 10.6 0.013 0.012
V2 18.77 19.1 0.038 0.040

FIG. 4. Dimensionless functionsVsRed for V-shaped cantilevers:sad V1, sbd
V2. Measurements are shown as solid circles. The solid lines are correspond-
ing fits to the measured data points, with empirical formulas given bysad
VsRed=54.33Re−0.728+0.00915 ln Reand sbd VsRed=31.14Re−0.700+0.0215 ln Re.
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are adjacent to each other on the same chip, we were able to
determine the thickness of gold deposited and the change in
stiffness of all cantilevers from the measurements of the rect-
angular cantilever. The stiffness of the rectangular cantilever
was measured using Eq.s8d, and the thickness of gold was
determined using Eq.s3d of Ref. 12, which only requires the
resonant frequency and quality factor of the cantilever and
the density of gold. The stiffness of the adjacent V-shaped
cantilevers could then be determined using the approach in
Sec. IV of Ref. 12; the thickness of gold on all cantilevers
was identical due to the proximity of the cantilevers.

Results of this comparison are shown in Table III for the
rectangle and two V-shaped cantilevers. We note that the
thickness, mass, and spring constant of all cantilevers are
modified significantly by the deposited gold. Initially, the
resonant frequency decreases due to the increase in mass,
and eventually increases due to the enhanced stiffness, as
expected.6 The quality factors of all cantilevers increase as
gold is deposited. Despite the dramatic changes in resonant
frequency, quality factor, and stiffness, the results in Table III
demonstrate the validity of the new method in accurately
predicting the change in spring constant of the V-shaped can-
tilevers.

Finally, we assess the validity of the new method when
masses are attached to the end tips of the cantilevers, as is
often encountered in practice. For this purpose, we used one
of the V-shaped cantilevers studied in Ref. 20 with identical
plan-view geometry to cantileverV2 and applied the new
general method. Results of this comparison are presented in
Table IV for the addition of tungsten spheres of varying di-
ameter. Adding a mass to the end of the cantilever does not
modify its spring constant, but can significantly affect both
its resonant frequency and quality factor. Provided the sphere
does not significantly modify the functional form of the hy-
drodynamic load, the dimensionless functionVsRed mea-

sured for the unloaded cantilever will remain unchanged and
the method valid. As for the rectangular cantilevers studied
in Ref. 20 using the method of Saderet al.,12 we find that
adding a sphere to the V-shaped cantilever reduces the mea-
sured spring constant. Nonetheless, the new method remains
valid, provided the sphere diameter is not comparable to the
hydrodynamic length scale of the cantilever, i.e., its arm
width. This is as expected, since a sphere comparable to the
hydrodynamic length scale can significantly modify the hy-
drodynamic load, and thus enhance the energy dissipated per
cycle by the cantilever. This leads to Eq.s12bd underestimat-
ing the true energy dissipated per cycle, and consequently an
underestimation of the spring constant by the new method.

IV. CONCLUSIONS

We have presented a general scaling law enabling the
measurement of the stiffness of small bodies of arbitrary ge-
ometry and composition. All that is required is the determi-
nation of the dimensionless functionVsRed, which may be
achieved theoretically or experimentally on a single body by
adjusting the surrounding gas pressure. The resulting dimen-
sionless functionVsRed will then be valid for all such bodies
of identical geometry, regardless of their size and composi-
tion, provided the energy dissipated is dependent only on the
density and viscosity of the surrounding medium. To illus-
trate the validity of the technique, measurements were per-
formed on two types of V-shaped AFM cantilevers. The new
technique thus extends the method of Saderet al.12 to small
elastic bodies of arbitrary shape, allowing for the noninva-
sive calibration of their stiffness. This is expected to be of
value to users of the AFM, and for the general calibration of
small-scale mechanical devices and structures.
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TABLE III. Table showing the comparison of spring constants for varying
additional gold-coating thickness.kprev refers to the results obtained using
the previous method in Ref. 12, whereasknew corresponds to the new
method, Eqs.s12d and fR=vR/ s2pd. For the rectangular cantileverR, the
new and previous methods are identical, since the dimensionless function
VsRed is known theoretically. The nominal thickness of all unmodified can-
tilevers is 0.6mm. All measurements are performed at 760 Torr. Properties
of air: r=1.18 kg m−3 andh=1.86310−5 kg m−1 s−1.

Cantilever
Gold thickness

snmd
fR

skHzd Q
kprev

sN m−1d
knew

sN m−1d

R 0 14.05 23.8 0.020 ¯

R 120 11.36 38.2 0.025 ¯

R 342 10.57 67.3 0.040 ¯

R 430 10.87 81.3 0.050 ¯

V1 0 6.27 15.7 0.013 0.013
V1 120 5.08 25.5 0.016 0.017
V1 342 4.81 43.3 0.026 0.027
V1 430 4.88 54.0 0.032 0.034

V2 0 14.27 24.0 0.038 0.035
V2 120 11.60 45.1 0.046 0.050
V2 342 10.94 78.3 0.075 0.080
V2 430 11.38 90.0 0.093 0.097

TABLE IV. Table showing the effect of added mass on the validity of the
new method, Eq.s12bd, for the uncoated V-shaped cantilever in Ref. 20 with
geometry identical to cantileverV2. The measured spring constant of the
cantilever is 0.039 N/m. Tungsten spheres of varying diameter were used.
All measurements were performed at 760 Torr. Properties of air:r
=1.18 kg m−3 andh=1.86310−5 kg m−1 s−1.

Sphere diameter
smmd

fR

skHzd Q
knew

sN m−1d

0 17.99 19.4 0.039
7 11.92 33.0 0.038
9 10.59 37.9 0.037
10 9.35 43.2 0.036
12 6.92 56.5 0.032
14 5.52 66.6 0.028
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