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Two methods commonly used to measure the normal spring constants of atomic force microscope
cantilevers are the added mass method of Clevedaradl [J. P. Clevelanat al, Rev. Sci. Instrum.

64, 403(1993], and the unloaded resonance technique of Satlal. [J. E. Sader, J. W. M. Chon,

and P. Mulvaney, Rev. Sci. Instrum0, 3967(1999]. The added mass method involves measuring

the change in resonant frequency of the fundamental mode of vibration upon the addition of known
masses to the free end of the cantilever. In contrast, the unloaded resonance technique requires
measurement of the unloaded resonant frequency and quality factor of the fundamental mode of
vibration, as well as knowledge of the plan view dimensions of the cantilever and properties of the
fluid. In many applications, such as frictional force microscopy, the torsional spring constant is often
required. Consequently, in this article, we extend both of these techniques to allow simultaneous
calibration of both the normal and torsional spring constants. We also investigate the validity and
applicability of the unloaded resonance method when a mass is attached to the free end of the
cantilever due to its importance in practice. Z004 American Institute of Physics.

[DOI: 10.1063/1.1753100

I. INTRODUCTION vers made of crystalline materials, this approach can lead to
inaccuracies, since the elastic properties of the cantilever can
Experimental determination of the spring constants ofdepend upon the mode of deformation.
atomic force microscopeAFM) cantilevers is of fundamen- In this article, we extend two commonly used normal
tal importance in AFM applications. Currently, there existSPring constant calibration techniques to enable simultaneous
many techniques capable of calibrating the normal springletermination of b(_)th the normal and torsional spring con-
constant=® However, in applications such as lateral force Stants of AFM cantilevers.
microscopy, knowledge of the torsional/lateral spring con-(1) The added mass method of Clevelaetdal,! henceforth
stant is of primary importance. Unfortunately, comparatively  referred to as th@ormal Cleveland methodletermines
little research on calibration techniques for the torsional the normal spring constant by monitoring the change in
spring constant has appeared in the literature. Current meth- the fundamental resonant frequency of flexural vibration
ods typically require knowledge of the normal spring con- ~ Upon addition of known masses to the free end of the
stant of the cantilever, which is then used to determine the Cantilever. An important feature of this calibration
torsional spring constant after a relationship between the two method is that it is val|d_ for any ca_ntllever, _rega_\rdle§s of
. . e . the geometry or material properties, making it univer-
spring constants is establish&d Alternatively, once the . ; .
: . : sally applicable. However, the requirement for the addi-
normal spring constant has been determined, theoretical for-

. ) tion of masses makes this technique destructive.
mulas can be used to calculate the torsional SPNiNg2) The unloaded resonance method of Sasteal,? hence-

constant.®"* This latter approach relies on knowledge of ot referred to as theormal Sader methods princi-

the Poisson ratio of the cantilever material, and is only valid  pally concerned with the normal spring constant of rect-
for cantilevers composed of isotropic materials. For cantile-  angular AFM cantilevers. It requires measurement of the
resonant frequency and quality factor of the fundamental

aAuthor to whom correspondence should be addressed: electronic mail; ~ fleXural mode in fIL_lid(typ_icaIIy _air), as well as l_mOW"
jsader@unimelb.edu.au edge of the plan view dimensions of the cantilever. As
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such, this method is nondestructive, noninvasive, and al-

lows rapid determination of the normal spring constant @)

of rectangular cantilevers. It can also be extended to

other cantilever geometries, as discussed in Ref. 2. N

Extensions of the aforementioned calibration techniques T2
to measurement of the torsional spring constant shall hence-
forth be referred to as thtrsional Cleveland methodnd
the torsional Sader methodespectively. Derivation of the
torsional Cleveland method will draw on classical torsion
theory, while the torsional Sader method utilizes results of a
recent theoretical study of the torsional frequency response
of cantilever beams immersed in viscous fluldSince each
of these torsional extensions involves an experimental setup )
identical to its normal counterpart, no additional effort is FIG. 1. Schematic illustration df) the flexural deflectiod z of a cantile-
required to obtain the torsional spring constant. Consever due to applied normal fords and (b) the torsional deflectiot¢ of a
quently, simultaneous calibration of both the normal and tor<cantilever due to applied torque
sional spring constant is possible using these techniques.

We commence by briefly reviewing the normal Cleve- k,
land method and then formulating its extension to the tor- ~ Ms=—3—Me, 3
sional spring constant. A brief review of the normal Sader f
method is then presented, followed by its extension to thavherek, is the normal spring constant angl is the effective
torsional spring constant. Important features of both extenmass of the cantilever. Attaching several different masses
sions are discussed. These techniques are then validated @ad measuring the corresponding resonant frequency enables
perimentally, and results compared. Finally, we investigatdhe normal spring constark, to be determined from the
the effect of an attached mass on the accuracy of both thglope of a linear plot oM vs w; 2.
normal and torsional Sader methods due to its relevance to
AFM applications, such as colloid probe measurements. 2. Torsional Cleveland method

®)

~

We now extend the Cleveland method to enable calibra-
Il. THEORY tion of the torsional spring constant. The fundamental radial
resonant frequency of torsional vibratien of a cantilever
The spring constant of a cantilever relates the load apef arbitrary geometry is given by
plied to subsequent deformation of the cantilever. Specifi-

cally, the normal spring constat, connects the flexural wfzﬁy (4)
deflectionAz due to an applied normal forde, Je
N wherek,, is the torsional spring constant of the cantilever,
kZ:E’ (1) and J, its effective mass moment of inertia. With the addi-

tion of a masgwith mass moment of inertid) to the free
whereas the torsional spring constéptrelates the torsional end of the cantilever, the radial resonant frequency of tor-

deflectionA¢ to an applied torqud, sional vibration becomé!*
T k
Ke=x7- ) wi=—2. (5)
" A I+,

For a schematic illustration of these two types of deforma+or a spherical added mass of radiusnd massM, the
tion; see Figs. (@) and 1b), respectively. mass moment of inertidg about its axis is given by

In the following derivations, we use a subscript su- Jm2M.r2 ®)
perscripi f or t to refer to flexural or torsional vibrations, sT5st
respectively. Assuming that the sphere is placed at the free end of the

cantilever with its center aligned on the major axis of the

A. Cleveland methods cantilever, and provided the diameter of the sphere is much

greater than the thickness of the cantile?ahe total added
mass moment of inertia due to the sphégecan be calcu-

_ o lated using the parallel axis theoréfh,
The normal Cleveland method involves monitoring the

_7 2
change in fundamental flexural resonant frequency due to the Js=5Myr?. @)
addition of known masses to the free end of the cantileversupstituting Eq(7) in Eq. (5), we obtain
These applied masses are typically spherical. The relation-

1. Normal Cleveland method

. : k
ship between the added mads and the fundamental radial w2= ¢ _ 8
resonant frequency of flexural vibratiaes is b 7/5M Sr7+Je ®
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Note that the dependence upon the lengthwise positioning of
the load is much stronger for the normal spring constant than
it is for the torsional spring constant; cf. Eq40) and(11).
For cantilevers of other geometries, the situation can be
more complex. One such example is the commonly used
W V-shaped cantilever, where the torsional spring constant is
L o extremely sensitive to lengthwise positioning of the Idad.

b Indeed, it is absolutely necessary to apply the load away
from the end of the cantilever if it comes to a point, because
the V-shape geometry is unable to support a torque applied at
its very end-tip, where its torsional rigidity is zetdThis is
an important consideration when trying to determine the tor-
sional spring constant of V-shaped AFM cantilevers. This

A undesirable property can significantly complicate calibration

N and application of V-shaped cantilevers in torsional/lateral
force measurements.
L

(@)

()

h

e

FIG. 2. Sghematic illustration of the plan view dimensionga&fa rectan- 4. Off-axis loading
gular cantilever andb) a V-shaped cantilever.
All of the above theoretical formulas implicitly assume
) ) ) that the load is applied on the major axis of the cantilever.
Rearranging Eq(8) and expressing the mass in terms of the\ye now consider the effect of lateral displacement of the

radiusr and densityps of the sphere, we obtain spherical mass away from the major axis of the cantilever,
28mpor® Ky which we termoff-axis loading
—g = 2 Je. ©) It has been shown using finite-element analysis that de-

15 @t viation in the normal spring constant due to off-axis loading
Clearly, if several different spheres are attached with theiis small for both rectangular and V-shaped cantileveus.
centers aligned on the major axis of the cantilever at its fresimilar approach shows that the effect of off-axis loading on
end, then a plot ofl;=28mpyr°/15 vs w, ? will be linear, the torsional spring constant also results in only small devia-
with a gradient equal to the torsional spring constapt tions from the on-axis values for both rectangular and
Furthermore, the effective mass moment of inertia of theV-shaped cantilevers, provided that the load is applied on the
cantilever is given by the negative intercept with the verticalneutral axis of the cantilevé?. For example, the torsional
axis. spring constant of a rectangular cantilever of aspect ratio

L/b=10[see Fig. Pa)], varies by at most 2% when the load

is applied off-axis. Similar results are observed for V-shaped

. cantilevers.
3. Off-end loading Experimentally, the off-axis application of a spherical
The theory presented above assumes that the spherigalass in the normal Cleveland method has been demonstrated

masses are placed at an identical position on the cantileveio have very little effect on the measured resonant frequency,
Consequently, this would yield the spring constants at tha&and consequently the measured normal spring conttant.
position. In practice, however, the spring constant may bélowever, off-axis application of a spherical mass introduces
required away from this position. For the case of a rectangusome experimental difficulties for the torsional Cleveland
lar cantilever beam of length, it is known that normal method. If the spherical mass is applied away from the major
spring constank,, evaluated when the load is applied a axis of the cantilever, the total mass moment of inertia due to
distanceAL from the free end, is related to the normal springthe sphere becomes
constant at the end of the cantilevk,, by*® 2

L )3 5
L—AL) ~ (10 - i -

wheree is the projected distance between the center of mass
This equation holds for both rectangular and V-shapedf the sphere and the axis of rotation onto the plane of the
cantilevers:®'” schematics of which are given in Fig. 2. cantilever. It then follows that the mass moment of inertia of

The situation is very different, however, for the torsional @ Sphere applied off axis is larger than that of an identical

spring constant. Using beam theory, it is simple to show thagPhere applied on the major axis of the cantilever, cf. Egs.
torsional spring constark, of a rectangular cantilever at (7) and(12). This increase in mass moment of inertia will

distanceAL from its free end is related to the spring constantcause the frequency of torsional vibration to decrease; see
at the end<§, by Eq. (5). However, any off-axis positioning of the spherical

mass leads to coupling of the flexural and torsional modes of
K —KE ) (11) vibration?! This greatly complicates the resulting analysis.
¢ L—AL)" Hence, we do not derive an explicit theoretical result for this

J=|=+|=| M2, (12

k,=kE
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case, but instead experimentally examine the effect of off- 100
axis application of the spherical masses on the measured tor-
sional spring constant in Sec. Ill.

t 1 <=—r]
B. Sader methods I'w) “‘\-\\

10

1. Normal Sader method 0.1 N
The normal Sader method for calibrating the normal T~
spring constant of rectangular AFM cantilevers involves 001 01 1 10 100 1000

measurement of the unloaded radial resonant frequency Re

and qua“ty faCton of the fundamental flexural resonance FIG. 3. Hydrodynamic functioi*(w) for a rectangular cantilever beam as

peak for a cantilever beam immersed in fluid, typi_cally ?‘ir-afunction of the Reynolds number Repwb?/(47). The dashed line is the
Provided the quality factor is much greater than unity, whichreal component!(w), while the solid line is the imaginary component

is typically satisfied if the cantilever is immersed in air, the I'i(®).
normal spring constant at the end-tip of the cantilever is
given by

k,=0.1906b?L Q;w?T| (wy), (13

wherep is the density of the fluidh andL are the width and WhereQ, is the quality factor of the fundamental torsional
length of the cantilever, respectively, afflis the imaginary ~ resonance peak, agf(w) is the imaginary part of the hy-

component of the hydrodynamic function given by E20)  drodynamic functiol™(w). Substituting Eqs(15) and(16)
of Ref. 22. in Eq. (14), we then obtain

ky=0.159b*LQw?T}(w;). (17)

gquation(l?) is the required result, and it relates the tor-

We now extend the normal Sader method to the related. . . . .
L . . sional spring constant at the end tip of the cantiléygto its
problem of calibrating the torsional spring constant of a rect- . - :
lan view dimensions andb, and the resonant frequency

angular cantilever beam, which is derived in an an analogou@ :
. w; and quality factorQ, of the fundamental resonance peak
manner to the normal Sader method. Assuming the lehgth . S ) o :
: : . . of torsional vibration in fluid. It is important to emphasize
of the cantilever beam is much greater than its witith that this expression is valid provide@> 1, which is typi
which in turn greatly exceeds its thickndssit can be easily P P o yp

shown that the torsional spring constdqf at its end-tip is cally Sat.'Sf'?d In_practice, espe_ually for a cant{lever im-
given by?3 mersed in air. Furthermore, the inherent assumption that the

length of the cantilever greatly exceeds its width, which in
turn greatly exceeds its thickness, is also typically satisfied.

3mpb ; ;
pch=——[Ql(w) —T'r(wy)], (16)

2. Torsional Sader method

1 3 2
k¢zﬁpcb hLof yae: (14
where p, is the density of the cantilever, ang, ., is the ~S- Non-rectangular cantilevers
fundamental radial resonant frequency of torsional vibration ~ The normal and torsional spring constants of cantilevers
in vacuum. with non-rectangular geometries can be calibrated indirectly
Equation(14) is of limited use, however, due to the dif- using the Sader methods, as we shall now discuss. To begin,
ficulty in measuring both the cantilever mags.lfhL) and  we note that the material properties and thickness of all can-
resonant frequency in vacuum. Consequently, we refer to thiélevers on a single chip are typically identical. Consequently,
recent theoretical model for the torsional frequency responsprovided the chip under consideration has multiple cantile-
of cantilever beams immersed in viscous fluids by Green andgers attached, and at least one of these cantilevers is rectan-
Sadert? Provided the quality factor of the torsional reso- gular in geometry, then the spring constants of the non-
nance peak is much greater than unity, it follows that therectangular cantilevers can be easily determined as follows.
vacuum radial resonant frequency of torsional vibration  As discussed in Ref. 2, the normal spring constant of the
wy vac CaN be directly related to the radial resonant frequencyectangular cantilever is first measured, from which the ri-

of torsional vibration in fluidw;, by gidity Eh®, whereE is the Young’s modulus of the cantile-
3mpb 1/2 ver, is then evaluated,
Wt yac— Wt 1+ —Ff'(wt) , (15) 4L3
' 2p 3_
¢ Eh®=k (18)

z

wherep is the density of the fluid, anB! is the real part of b
the (known) hydrodynamic functiom™'(w); see Fig. 3. An  Using this known rigidity and the plan view dimensions of
analytic expression far'(w) is given in Eq.(20) of Ref. 12.  the cantilever in question, theoretical results for the normal
Importantly,I''(w) depends only upon the Reynolds numberspring constants of the non-rectangular cantilevers can then
Re=pwb?/(47), wherey is the fluid viscosity andv is the  be used to determine their normal spring constant$24
radial torsional frequency, and is independent of the cantile- The torsional spring constant of non-rectangular cantile-
ver thickness and density. vers can be found in an analogous manner. Namely, the tor-

In addition, the areal mass densjiyh is given by? sional spring constant of the rectangular cantilever is first
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TABLE |I. Summary of formulas for the Cleveland and Sader methods for
normal spring constark, and torsional spring constaky, , derived in Sec.
Il Combined spectra
g
Method Formula 2E
o 2
Normal Cleveland k, g E |Torsiona1 spectra only |
M=z e 3£ . I
| f E8
Torsional Cleveland 28mpgr® _ Ky . £
15 w? e [ Flexural spectra only |
Normal Sader k,=0.1906pb2L Q;w?I'f () . A
Torsional Sader ks=0.1592b*LQ 0\ (w;) 0 100 200 300 400 500
Frequency (kHz)

. . . . FIG. 4. Thermal noise spectra due to flexural vibration dhlgttor), tor-
3
measured, from which the torsional I‘Igld@h » WhereG is sional vibration only(middle) and combined specti@op). The vertical off-

the shear modulus of the cantilever, is evaluated using theet is arbitrary and for illustrative purposes only. All plots have identical
result logarithmic vertical scales.

3L
3_
Gh'= k«ﬁT- (19 has a torsional resonant frequency below 500 kHz, which is

) . i the highest frequency attainable using our instrumentation.
Theoretical results for the torsional spring constants of non-  The third set of cantilevers consist of gold coategNgi

rectangular cantilevd%l&z“ can then be used to calibrate rgctangular and V-shaped cantilevers on a single chip. The
the;_e cantllevers,' since the;e results rely on the tors'on?éctangular cantilever, denotdy, and the V-shaped canti-
rigidity and plan view dimensions. _ lever adjacent to ityV3, were used in experiments to verify
Importantly, neither of these methods requires anyinay the calibration techniques are also applicable to cantile-
k_nowledge of _th_e elastic propem_es of th_e cantilever, quantiyers made of composite materials.
ties that are difficult to measure in practice. o Both experimental techniques rely on measurement of
Finally, a summary of the principal formulas derived in {he canilever resonant frequency. For the normal spring con-
Sec. Il is presented in Table I. stant, the flexural resonant frequency is required, while for
the torsional spring constant, the torsional resonant fre-
lll. EXPERIMENTAL RESULTS guency must be measured. Using a split quadrant photodiode
We now assess the validity of the calibration techniquesletector, which is common in many commercial AFMs, it is
derived above by presenting a detailed experimental compossible to collect the flexural and torsional frequency re-
parison. Three types of cantilevers are used in this assessponses individually or collectively, as demonstrated in Fig.
ment, all of which were procured from VeefbDetails of 4. By selecting the appropriate signals from the detector, it is
the geometries and plan view dimensions of all cantilevergasy to distinguish between flexural and torsional resonance
are given in Table II. peaks. In addition, combined measurement of the flexural
The first set consist of one rectangular cantilever andnd torsional signals enables simultaneous calibration of the
several V-shaped cantilevers on a single chip. These cantil&ormal and torsional spring constants using either technique
vers have imaging tips and are composed of uncoatgd,Si  described above, provided it is known which peaks corre-
Measurements were performed on the rectangular cantilevespond to the flexural and torsional resonances.
R;, and two V-shaped cantilevers, deno¥dandV,. All measurements were conducted in air, satisfying the
The second set of cantilevers are micromachined fronfundamental requirement of both Sader methods that the
single crystal silicon, and consequently have accuratelyguality factors greatly exceed unity. To measure the resonant
specified dimensions and material properffe©nly the  frequencyw (required for the Cleveland and Sader methpds
longest rectangular cantilever, denofed was used, since it and the corresponding quality fact@ (required for the
Sader methods onlythe thermal noise spectra of the canti-
TABLE II. Cantilever dimensions. Rectangular cantileve®s:(SisN,), R, levers were measuréd The resonant frequency and quality
(single crystal silicon andR; (gold coated SN,). V-shaped cantilevers:  factor of the resonance peak were then obtained by fitting
Vi, andV; (both SgN,), andVs (gold coated SN,). Geometric parameters hjs signal with the response of a simple harmonic oscillator.
are shown in Fig. 2. All measurements were performed using an optlcall_o ensure accurate fits, a white noise floor was included in

microscope.
the fitting proceduré=>° This approach enabled accurate de-
L b d termination of the resonant frequency and quality factors to
Cantilever (um) (1) (1) within =0.1% and+1%, respectively.
R, 197 19 In all cases, the thermal noise spectra were sufficiently
R, 422 29 strong that no active excitation of the cantilevers was re-
Rs 205 19.5 quired. Nonetheless, to examine the applicability of such ex-
xl gig iég gi citation, we also drove thR; cantilever by vibrating its base
Ve 317 222 > using tapping mode cantilever tuning softwdteThis in-

duced normal oscillations at the base of the cantilever. In all
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=

w2 (10712 52 rad—?)

_ —10
0 1 2 3 4 5 6 7 kp =4.3x107'° Nm

g
O
2
g g k. =0.020Nm™!
5 g 3]
5 £z .
T 520 SN
4 E: g .‘. .. " ..
E Z L[] ’ L]
0 15 20 25 7 380 390 400 410
frequency (kHz)

0 1 2 3 4 5 6 7 o _
FIG. 6. Application of the Sader methods. Measured thermal noise spec-

w7 (1070 s rad=?) trum (closed circlesfitted with the response of the simple harmonic oscil-
lator (Ref. 30 (solid lineg for the R; cantilever. For clarity, some data
FIG. 5. Application of Cleveland methods: Torsioriablid line and closed points were removed.
circles and normal(dashed line and open circlefor the R; cantilever.
Straight lines are fits to experimental détacles, the slopes of which give

the spring constants. Density of tungsten sphepgs;=19 250 kg m>. techniques for the three rectangular cantilev&s, R, and
Rs. It is clear that good agreement between the Sader and

cases, we were able to extract the flexural and torsional res§z/€véland methods is obtained for both the normal and tor-
nance peaks using this approach. These measuremerﬁgnal spring constants_ for all cases. We empha5|ze that, in
agreed to a high degree of accuracy with those of the thermaoth_metho_ds, the torsional an_d normal spring constants are
noise spectra for both the resonant frequencies and qualigPt@ineéd simultaneously and independently of each other.

factors. This behavior is expected, provided the drive ampli- "€S€ results demonstrate the validity of these different yet

tudes are not large enough to introduce nonlinearities. complementary techniques for the case of rectangular canti-
It is interesting that both normal and torsional vibrations'€Ve'S- . _

are induced by purely normal excitation at the base of the Inc'ggble IIl, we also compare the torsional spring con-

cantilever. A possible reason for this is that the plane of the@NtK, " obtained by first measuring the normal spring con-

cantilever is not perfectly level with the horizontal. stantk,, and then applymg the following theoretical result

(for rectangular cantileveys!
2L2

= kZ EYZ R

3(1+v)

A. Comparison of Cleveland and Sader methods

The applicability of the Cleveland and Sader methods to K, (20
simultaneous measurement of both the normal and torsional
spring constants is now assessed. For the Cleveland methodgherev is the Poisson ratio of the cantilever. This approach
tungsten spheres of differing diameters were attached to theas proposed in Ref. 9. In the absence of a measurement of
free end of the cantilever, with their centers lying on thethe Poisson ratio, a nominal value pf 0.25 was used for
major axis of the cantilevéf A small amount of petroleum all cases. In this studyk, was obtained using the normal
jelly was used to attach the tungsten spheres to the cantil&leveland method, although any method for measuring the
vers to allow more accurate reproducible placement. The adiormal spring constant can be used. Note that Q) is
dition of petroleum jelly has a negligible effect on measuredstrictly valid for cantilevers composed of isotropic materials
resonant frequencies, because its mass is much smaller thanly, whose aspect ratids/b are large. For thd&?; and Ry
that of the tungsten spheres. No discernible shift in resonardantilevers, which are composed of isotropic materials, the
frequency was observed when the jelly was applied to theorsional spring constants obtained in this manner agree well
cantilever. The thermal noise spectrum was then measuredith those obtained using the torsional Cleveland and tor-
for each attached sphere, from which both the flexural andional Sader methods, with errors10%. This is expected,
torsional resonant frequencies were simultaneously detesince the Poisson ratio of s, is known to lie between 0.2
mined. The diameters of the spheres were measured using and 0.3%333*Thus, the choice of=0.25 results in only 5%
optical microscope(to within accuracy of+1%), from  uncertainty. The resulting comparison therefore confirms the
which the masdMg and mass moment of inertidy of the  validity of both the torsional Cleveland and torsional Sader
applied spheres were then calculated. Figure 5 shows plots afiethods. For th&, cantilever, however, the result obtained
the added mass and added mass moment of inertia as fungsing Eq.(20) differs significantly, with a discrepancy of
tions ofcof_2 and w{z, respectively, for rectangular cantile- more than 20%. This error is due to tRg cantilever being
verR; . Itis strikingly evident that both plots are linear. This composed of a crystalline material, whose elastic properties
agrees with the theoretical formalism presented in Sec. lidepend upon the mode of deformation, whereas(EQ). is
and allows immediate simultaneous determination of the norelerived for an isotropic material.
mal and torsional spring constants. Analogous results for the Results obtained using the Cleveland and Sader methods
Sader methods are presented in Fig. 6. In contrast to thier the three V-shaped cantilevers are presented in Table IV.
Cleveland methods, all that is required in this case is a singl&gain, note the good agreement between these methods, for
measurement of the thermal noise spectrum, from whichboth the normal and torsional spring constants. The Cleve-
bothk, andk, are determined. land methods are implemented in exactly the same manner as
In Table Ill, we present a detailed comparison of thesdor the rectangular cantilevers. It is important to note that
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TABLE lIl. Rectangular cantilevers. Comparison of spring constants determined by the Sader nistipgdscript SadgrCleveland methodésuperscript
Clev); and Eq.(20) (superscript calc f andQ are the resonant frequency and quality factor, respectively. Substrgstdt refer to flexural and torsional

cases, respectively. Measurements were performed ipaif.18 kg m 3 and 7=1.86<10"°5 kgm 's™%.

f ] ft kSader kSader kCIev kCIev kcalc
Z 4
Cantilever (kHz) Qs (kHz) Q. (Nm™Y) (10% N m) (Nm™1) (107 N'm) (10*1(8 N m)
R, 18.78 17.2 393.4 104 0.020 4.3 0.020 4.5 4.1
R, 10.12 25.4 258.3 167 0.037 26 0.037 28 35
R, 15.39 20.9 3145 123 0.020 4.2 0.020 4.1 4.5

care must be taken in positioning the spherical masses wheached away from the major axis of the cantilever. Results
calibrating the torsional spring constants of V-shaped cantiebtained by applying the spheres as close as possible to the
levers. This is because the strong dependence of the torsiorgitle edge of th&k; cantilever are presented in Fig. 7, along
spring constant of V-shaped cantilevers on lengthwise poswith results for spheres attached along the major axis of the
tioning of the load® necessitates that each sphere be placedantilever. Applying Eq(9), which is derived for attachment
in the same position to a high degree of accuracy. This inen the major axis, leads to a measured torsional spring con-
troduces some experimental difficulties into the calibrationstant approximately 25% smaller than the corresponding on-
procedure. Furthermore, as discussed previously, the spherasis value. This behavior is due to the increase in mass mo-
must be attached away from the end of the cantilever if itment of inertiaJg of the sphere with off-axis loading and
comes to a point; see Fig(l8. The V-shaped cantilevers coupling of the flexural and torsional modes, which is not
used in this studyV,, V,, andV;, however, all had their taken into account in Sec. Il due to its complexity. Nonethe-
end-tips trimmed so that they did not meet at a point. Conless, since the spheres are attached at the maximum distance
sequently, the spheres could be applied at the end in thisom the major axis £ 9 um away, these results represent
case. We note that the spring constants measured using ttiee worst case scenario. As such, the error in measured tor-
Cleveland methods correspond to those at distaricdrom  sional spring constant due to off-axis application of the
the center of the attached sphere to the projected end-tigpheres will be smaller for cases where the spheres are po-
point. sitioned closer to the major axis of the cantilever, as demon-
The Sader methods were also used to calibrate both th&rated above. In contrast to this finding, we remind the
normal and torsional spring constants of the V-shaped cantireader that the normal Cleveland method is insensitive to
levers. This was possible because all three V-shaped cantileff-axis loading of the spheré§.
vers have a rectangular cantilever present on the same chip.
Using the methO(_onogy presented in Seck;landl_<¢ for the C. Sader methods: Effect of added mass
rectangular cantilever were first measured using the Sader
methods. The normal and torsional spring constants of the In practice, many AFM measurements are performed
V-shaped cantilever were then obtained from the measuredith a colloidal probe attached to the free end of the canti-
plan view dimensions of both cantilevers, using the approlever. Consequently, here in Sec. IlIC we investigate the
priate theoretical formulas"'°We stress that this approach effect of such added mass on the accuracy and validity of the
is only valid when a rectangular cantilever is present on thédader methods. Rectangular cantilevers only are considered,
same chip as the V-shaped cantilever in question. since the Sader methods are primarily applicable to these
These results, combined with those for the rectangulagantilevers. Results of this investigation using Recanti-
cantilevers above, therefore demonstrate the applicability dever for both the normal and torsional Sader methods are
the Cleveland and Sader methods in simultaneous measureresented in Tables V and VI, respectively.

ment of both the normal and torsional spring constants. To begin, we consider the normal Sader method. Appli-
cation of a mass to the free end of the cantilever, while not
B. Torsional Cleveland method: Off-axis loading affecting its normal spring constant, will result in a decrease

We now investigate the applicability of the torsional

Cleveland method for cases where the added masses are at-
—~ 15 kg =45x107'° Nm
TABLE IV. V-shaped cantilevers. Comparison of spring constants deter- % 2
mined by the Cleveland methodsuperscript Cle); and the Sader methods b
(superscript SadgerSpring constants evaluated a distaide from the end a 1
tip projected to a point. The Sader methods were implemented by first cali- "g ” ks =33x10"° Nm
brating a rectangular cantilever and then applying the formulas in Refs. 18, . 05
17. and 19. =~  On-axis loading
0 o Off-axis loading
. AL k;:lev kglev kZSader kSader 0 1 > 3 " 5
Cantilever (um) (Nm™) (10®Nm) (Nm™) (10°Nm)
w? (10712 s?rad~2)
V, 35 0.013 6.8 0.013 6.6
V, 20 0.037 8.7 0.038 8.7 FIG. 7. Effect of off-axis loading on measurkg of the R, cantilever using
Vs 31 0.014 6.4 0.014 6.1 the torsional Cleveland method. On-axis loadiipsed circley off-axis

loading (open circleg The off-axis distance-9 um.
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TABLE V. Effect of added mass on the normal Sader method forRhe  wjth a silica Sphere attached to the major axis of the cantile-
cantilever for tungsten and silica spherBsis the diameter of the spherg, ver at its free end differs significantly from the value ob-

and Q; are the resonant frequency and quality factor, respectively, of thetained for the unloaded cantilever. As the sphere gets laraer
fundamental flexural resonandd is the mass of the spheres, angdis the . i . I p g ) ger,
mass of the cantilevémeasured using the plan view dimensions and@q. ~ this difference increases. Similar results are obtained for

in Ref. 2. Density of tungstenp,,,,—19250 kgm* density of silica tungsten masses. While the resonant frequency of torsional

psiica= 2400 kg n ®. All measurements were performed in air. vibration decreases as the diameter of the sphere increases,
b f, K, the quaIiFy factor is'seen to have no particular trenq, .which is
Sphere (um)  (kH2) Q Mo/m,  (NmY) nonsensical. This is most likely due to the nonrigid bond
between the sphere and the cantilever, which is probed by the
Tungsten 70 ﬁgzéo 2;7%1 ofs 00601290 twisting motion of the cantilever. This undesirable property
8 .01 40.2 0.93 0.018 is not present in the normal Sader method, since flexural
9 7.93 45.0 1.36 0.018 deflection of the cantilever does not probe this nonrigid
10 6.82 47.8 1.90 0.016 bond.
Silica 2 16.29 19.2 0.08 0.020 These resu_lt§ indicate that the normal Sader method is
8 1561  19.8 0.12 0.019 capable of providing an accurate measurement when a sphere
9 13.96  23.0 0.17 0.019 is attached to the free end of the cantilever. However, this is
12 12.31 25.2 0.37 0.017 not true for the torsional Sader method, in which spurious
14 1116 274 0.54 0.017

measurements can result.

We have presented extensions of both the normal Cleve-
land and normal Sader methods to enable calibration of the
torsional spring constants of AFM cantilevers. These exten-
sions, referred to as the torsional Cleveland and torsional
Sader methods, respectively, allow direct experimental deter-
mination of the torsional spring constants of AFM cantile-
vers, and show good agreement for both rectangular and
%F:‘shaped cantilevers. Since these torsional extensions utilize

in resonant frequencw; and an increase in quality factor
Q:. A decrease inv;, however, leads to an increase in the
imaginary component of the hydrodynamic functB}(wf);
see Fig. 1 of Ref. 2. These increaseQinandFif(wf) do not
quite balance the decreasedr,? in Eq. (13). Consequently,

ob_t;ilneto_l fo_lf E:)T u\r}loa(rj]ed cilr}tllelv(dnetﬁc:t{ual vtahlu)e dTh'S ItS onstant counterparts, they enable direct and simultaneous
evident In fable vV, where 1t 1s clear that, as the diameter ok, ip ation of both normal and torsional spring constants of

the spheres increases, the normal spring constant MEeAsUrREN cantilevers

using the normal Sader method decreases. These results In- In order to assist in implementation of the Sader and

dicate that the size of the sphere, and not its mass, is prim‘ﬁ'l‘()rsional Sader methods, the authors have made available
rily responsible for the decrease in measured normal springn online calibration program, located at http:/

constan't. For exqmple,'tu.ngsten and s_ilica spheres of t .ampc.ms.unimelb.edu.au/afm. Also available at that
same size result in a similar decrease in measured normﬁlﬂdress are Mathematica files which calculate the spring con-

spring constant, although the heavier tungsten sphen—:‘?:tants using the aforementioned techniques.
slightly enhance this decrease. These results suggest that the

contributing error in the normal Sader method is less tha
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