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Two methods commonly used to measure the normal spring constants of atomic force microscope
cantilevers are the added mass method of Clevelandet al. @J. P. Clevelandet al., Rev. Sci. Instrum.
64, 403 ~1993!#, and the unloaded resonance technique of Saderet al. @J. E. Sader, J. W. M. Chon,
and P. Mulvaney, Rev. Sci. Instrum.70, 3967~1999!#. The added mass method involves measuring
the change in resonant frequency of the fundamental mode of vibration upon the addition of known
masses to the free end of the cantilever. In contrast, the unloaded resonance technique requires
measurement of the unloaded resonant frequency and quality factor of the fundamental mode of
vibration, as well as knowledge of the plan view dimensions of the cantilever and properties of the
fluid. In many applications, such as frictional force microscopy, the torsional spring constant is often
required. Consequently, in this article, we extend both of these techniques to allow simultaneous
calibration of both the normal and torsional spring constants. We also investigate the validity and
applicability of the unloaded resonance method when a mass is attached to the free end of the
cantilever due to its importance in practice. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1753100#

I. INTRODUCTION

Experimental determination of the spring constants of
atomic force microscope~AFM! cantilevers is of fundamen-
tal importance in AFM applications. Currently, there exist
many techniques capable of calibrating the normal spring
constant.1–5 However, in applications such as lateral force
microscopy, knowledge of the torsional/lateral spring con-
stant is of primary importance. Unfortunately, comparatively
little research on calibration techniques for the torsional
spring constant has appeared in the literature. Current meth-
ods typically require knowledge of the normal spring con-
stant of the cantilever, which is then used to determine the
torsional spring constant after a relationship between the two
spring constants is established.6–8 Alternatively, once the
normal spring constant has been determined, theoretical for-
mulas can be used to calculate the torsional spring
constant.4,9–11 This latter approach relies on knowledge of
the Poisson ratio of the cantilever material, and is only valid
for cantilevers composed of isotropic materials. For cantile-

vers made of crystalline materials, this approach can lead to
inaccuracies, since the elastic properties of the cantilever can
depend upon the mode of deformation.

In this article, we extend two commonly used normal
spring constant calibration techniques to enable simultaneous
determination of both the normal and torsional spring con-
stants of AFM cantilevers.

~1! The added mass method of Clevelandet al.,1 henceforth
referred to as thenormal Cleveland method, determines
the normal spring constant by monitoring the change in
the fundamental resonant frequency of flexural vibration
upon addition of known masses to the free end of the
cantilever. An important feature of this calibration
method is that it is valid for any cantilever, regardless of
the geometry or material properties, making it univer-
sally applicable. However, the requirement for the addi-
tion of masses makes this technique destructive.

~2! The unloaded resonance method of Saderet al.,2 hence-
forth referred to as thenormal Sader method, is princi-
pally concerned with the normal spring constant of rect-
angular AFM cantilevers. It requires measurement of the
resonant frequency and quality factor of the fundamental
flexural mode in fluid~typically air!, as well as knowl-
edge of the plan view dimensions of the cantilever. As
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such, this method is nondestructive, noninvasive, and al-
lows rapid determination of the normal spring constant
of rectangular cantilevers. It can also be extended to
other cantilever geometries, as discussed in Ref. 2.

Extensions of the aforementioned calibration techniques
to measurement of the torsional spring constant shall hence-
forth be referred to as thetorsional Cleveland methodand
the torsional Sader method, respectively. Derivation of the
torsional Cleveland method will draw on classical torsion
theory, while the torsional Sader method utilizes results of a
recent theoretical study of the torsional frequency response
of cantilever beams immersed in viscous fluids.12 Since each
of these torsional extensions involves an experimental setup
identical to its normal counterpart, no additional effort is
required to obtain the torsional spring constant. Conse-
quently, simultaneous calibration of both the normal and tor-
sional spring constant is possible using these techniques.

We commence by briefly reviewing the normal Cleve-
land method and then formulating its extension to the tor-
sional spring constant. A brief review of the normal Sader
method is then presented, followed by its extension to the
torsional spring constant. Important features of both exten-
sions are discussed. These techniques are then validated ex-
perimentally, and results compared. Finally, we investigate
the effect of an attached mass on the accuracy of both the
normal and torsional Sader methods due to its relevance to
AFM applications, such as colloid probe measurements.

II. THEORY

The spring constant of a cantilever relates the load ap-
plied to subsequent deformation of the cantilever. Specifi-
cally, the normal spring constantkz connects the flexural
deflectionDz due to an applied normal forceN,

kz5
N

Dz
, ~1!

whereas the torsional spring constantkf relates the torsional
deflectionDf to an applied torqueT,

kf5
T

Df
. ~2!

For a schematic illustration of these two types of deforma-
tion; see Figs. 1~a! and 1~b!, respectively.

In the following derivations, we use a subscript~or su-
perscript! f or t to refer to flexural or torsional vibrations,
respectively.

A. Cleveland methods

1. Normal Cleveland method

The normal Cleveland method involves monitoring the
change in fundamental flexural resonant frequency due to the
addition of known masses to the free end of the cantilever.
These applied masses are typically spherical. The relation-
ship between the added massMs and the fundamental radial
resonant frequency of flexural vibrationv f is

Ms5
kz

v f
2 2me , ~3!

wherekz is the normal spring constant andme is the effective
mass of the cantilever. Attaching several different masses
and measuring the corresponding resonant frequency enables
the normal spring constantkz to be determined from the
slope of a linear plot ofMs vs v f

22 .

2. Torsional Cleveland method

We now extend the Cleveland method to enable calibra-
tion of the torsional spring constant. The fundamental radial
resonant frequency of torsional vibrationv t of a cantilever
of arbitrary geometry is given by

v t
25

kf

Je
, ~4!

wherekf is the torsional spring constant of the cantilever,
and Je its effective mass moment of inertia. With the addi-
tion of a mass~with mass moment of inertiaJ) to the free
end of the cantilever, the radial resonant frequency of tor-
sional vibration becomes13,14

v t
25

kf

J1Je
. ~5!

For a spherical added mass of radiusr and massMs , the
mass moment of inertiaJs about its axis is given by13

Js5
2
5 Msr

2. ~6!

Assuming that the sphere is placed at the free end of the
cantilever with its center aligned on the major axis of the
cantilever, and provided the diameter of the sphere is much
greater than the thickness of the cantilever,15 the total added
mass moment of inertia due to the sphereJs can be calcu-
lated using the parallel axis theorem,13

Js5
7
5 Msr

2. ~7!

Substituting Eq.~7! in Eq. ~5!, we obtain

v t
25

kf

7/5Msr
21Je

. ~8!

FIG. 1. Schematic illustration of~a! the flexural deflectionDz of a cantile-
ver due to applied normal forceN and ~b! the torsional deflectionDf of a
cantilever due to applied torqueT.
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Rearranging Eq.~8! and expressing the mass in terms of the
radiusr and densityrs of the sphere, we obtain

28prsr
5

15
5

kf

v t
2 2Je . ~9!

Clearly, if several different spheres are attached with their
centers aligned on the major axis of the cantilever at its free
end, then a plot ofJs528prsr

5/15 vs v t
22 will be linear,

with a gradient equal to the torsional spring constantkf .
Furthermore, the effective mass moment of inertia of the
cantilever is given by the negative intercept with the vertical
axis.

3. Off-end loading

The theory presented above assumes that the spherical
masses are placed at an identical position on the cantilever.
Consequently, this would yield the spring constants at that
position. In practice, however, the spring constant may be
required away from this position. For the case of a rectangu-
lar cantilever beam of lengthL, it is known that normal
spring constantkz , evaluated when the load is applied a
distanceDL from the free end, is related to the normal spring
constant at the end of the cantilever,kz

E , by16

kz5kz
ES L

L2DL D 3

. ~10!

This equation holds for both rectangular and V-shaped
cantilevers,16,17 schematics of which are given in Fig. 2.

The situation is very different, however, for the torsional
spring constant. Using beam theory, it is simple to show that
torsional spring constantkf of a rectangular cantilever at
distanceDL from its free end is related to the spring constant
at the endkf

E , by

kf5kf
ES L

L2DL D . ~11!

Note that the dependence upon the lengthwise positioning of
the load is much stronger for the normal spring constant than
it is for the torsional spring constant; cf. Eqs.~10! and ~11!.

For cantilevers of other geometries, the situation can be
more complex. One such example is the commonly used
V-shaped cantilever, where the torsional spring constant is
extremely sensitive to lengthwise positioning of the load.18

Indeed, it is absolutely necessary to apply the load away
from the end of the cantilever if it comes to a point, because
the V-shape geometry is unable to support a torque applied at
its very end-tip, where its torsional rigidity is zero.19 This is
an important consideration when trying to determine the tor-
sional spring constant of V-shaped AFM cantilevers. This
undesirable property can significantly complicate calibration
and application of V-shaped cantilevers in torsional/lateral
force measurements.

4. Off-axis loading

All of the above theoretical formulas implicitly assume
that the load is applied on the major axis of the cantilever.
We now consider the effect of lateral displacement of the
spherical mass away from the major axis of the cantilever,
which we termoff-axis loading.

It has been shown using finite-element analysis that de-
viation in the normal spring constant due to off-axis loading
is small for both rectangular and V-shaped cantilevers.16 A
similar approach shows that the effect of off-axis loading on
the torsional spring constant also results in only small devia-
tions from the on-axis values for both rectangular and
V-shaped cantilevers, provided that the load is applied on the
neutral axis of the cantilever.20 For example, the torsional
spring constant of a rectangular cantilever of aspect ratio
L/b510 @see Fig. 2~a!#, varies by at most 2% when the load
is applied off-axis. Similar results are observed for V-shaped
cantilevers.

Experimentally, the off-axis application of a spherical
mass in the normal Cleveland method has been demonstrated
to have very little effect on the measured resonant frequency,
and consequently the measured normal spring constant.16

However, off-axis application of a spherical mass introduces
some experimental difficulties for the torsional Cleveland
method. If the spherical mass is applied away from the major
axis of the cantilever, the total mass moment of inertia due to
the sphere becomes

Js5F7

5
1S e

r D
2GMsr

2, ~12!

wheree is the projected distance between the center of mass
of the sphere and the axis of rotation onto the plane of the
cantilever. It then follows that the mass moment of inertia of
a sphere applied off axis is larger than that of an identical
sphere applied on the major axis of the cantilever, cf. Eqs.
~7! and ~12!. This increase in mass moment of inertia will
cause the frequency of torsional vibration to decrease; see
Eq. ~5!. However, any off-axis positioning of the spherical
mass leads to coupling of the flexural and torsional modes of
vibration.21 This greatly complicates the resulting analysis.
Hence, we do not derive an explicit theoretical result for this

FIG. 2. Schematic illustration of the plan view dimensions of~a! a rectan-
gular cantilever and~b! a V-shaped cantilever.
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case, but instead experimentally examine the effect of off-
axis application of the spherical masses on the measured tor-
sional spring constant in Sec. III.

B. Sader methods

1. Normal Sader method

The normal Sader method for calibrating the normal
spring constant of rectangular AFM cantilevers involves
measurement of the unloaded radial resonant frequencyv f

and quality factorQf of the fundamental flexural resonance
peak for a cantilever beam immersed in fluid, typically air.
Provided the quality factor is much greater than unity, which
is typically satisfied if the cantilever is immersed in air, the
normal spring constant at the end-tip of the cantilever is
given by2

kz50.1906rb2LQfv f
2G i

f~v f !, ~13!

wherer is the density of the fluid,b andL are the width and
length of the cantilever, respectively, andG i

f is the imaginary
component of the hydrodynamic function given by Eq.~20!
of Ref. 22.

2. Torsional Sader method

We now extend the normal Sader method to the related
problem of calibrating the torsional spring constant of a rect-
angular cantilever beam, which is derived in an an analogous
manner to the normal Sader method. Assuming the lengthL
of the cantilever beam is much greater than its widthb,
which in turn greatly exceeds its thicknessh, it can be easily
shown that the torsional spring constantkf at its end-tip is
given by23

kf5
1

3p2 rcb
3hLv t,vac

2 , ~14!

where rc is the density of the cantilever, andv t,vac is the
fundamental radial resonant frequency of torsional vibration
in vacuum.

Equation~14! is of limited use, however, due to the dif-
ficulty in measuring both the cantilever mass (rcbhL) and
resonant frequency in vacuum. Consequently, we refer to the
recent theoretical model for the torsional frequency response
of cantilever beams immersed in viscous fluids by Green and
Sader.12 Provided the quality factor of the torsional reso-
nance peak is much greater than unity, it follows that the
vacuum radial resonant frequency of torsional vibration
v t,vac can be directly related to the radial resonant frequency
of torsional vibration in fluidv t , by

v t,vac5v tS 11
3prb

2rch
G r

t ~v t! D 1/2

, ~15!

wherer is the density of the fluid, andG r
t is the real part of

the ~known! hydrodynamic functionG t(v); see Fig. 3. An
analytic expression forG t(v) is given in Eq.~20! of Ref. 12.
Importantly,G t(v) depends only upon the Reynolds number
Re5rvb2/(4h), whereh is the fluid viscosity andv is the
radial torsional frequency, and is independent of the cantile-
ver thickness and density.

In addition, the areal mass densityrch is given by12

rch5
3prb

2
@QtG i

t~v t!2G r
t ~v t!#, ~16!

whereQt is the quality factor of the fundamental torsional
resonance peak, andG i

t(v) is the imaginary part of the hy-
drodynamic functionG t(v). Substituting Eqs.~15! and ~16!
in Eq. ~14!, we then obtain

kf50.1592rb4LQtv t
2G i

t~v t!. ~17!

Equation ~17! is the required result, and it relates the tor-
sional spring constant at the end tip of the cantileverkf to its
plan view dimensionsL and b, and the resonant frequency
v t and quality factorQt of the fundamental resonance peak
of torsional vibration in fluid. It is important to emphasize
that this expression is valid providedQt@1, which is typi-
cally satisfied in practice, especially for a cantilever im-
mersed in air. Furthermore, the inherent assumption that the
length of the cantilever greatly exceeds its width, which in
turn greatly exceeds its thickness, is also typically satisfied.

3. Non-rectangular cantilevers

The normal and torsional spring constants of cantilevers
with non-rectangular geometries can be calibrated indirectly
using the Sader methods, as we shall now discuss. To begin,
we note that the material properties and thickness of all can-
tilevers on a single chip are typically identical. Consequently,
provided the chip under consideration has multiple cantile-
vers attached, and at least one of these cantilevers is rectan-
gular in geometry, then the spring constants of the non-
rectangular cantilevers can be easily determined as follows.

As discussed in Ref. 2, the normal spring constant of the
rectangular cantilever is first measured, from which the ri-
gidity Eh3, whereE is the Young’s modulus of the cantile-
ver, is then evaluated,

Eh35kz

4L3

b
. ~18!

Using this known rigidity and the plan view dimensions of
the cantilever in question, theoretical results for the normal
spring constants of the non-rectangular cantilevers can then
be used to determine their normal spring constants.11,18,24

The torsional spring constant of non-rectangular cantile-
vers can be found in an analogous manner. Namely, the tor-
sional spring constant of the rectangular cantilever is first

FIG. 3. Hydrodynamic functionG t(v) for a rectangular cantilever beam as
a function of the Reynolds number Re5rvb2/(4h). The dashed line is the
real componentG r

t (v), while the solid line is the imaginary component
G i

t(v).
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measured, from which the torsional rigidityGh3, whereG is
the shear modulus of the cantilever, is evaluated using the
result

Gh35kf

3L

b
. ~19!

Theoretical results for the torsional spring constants of non-
rectangular cantilevers11,18,24 can then be used to calibrate
these cantilevers, since these results rely on the torsional
rigidity and plan view dimensions.

Importantly, neither of these methods requires any
knowledge of the elastic properties of the cantilever, quanti-
ties that are difficult to measure in practice.

Finally, a summary of the principal formulas derived in
Sec. II is presented in Table I.

III. EXPERIMENTAL RESULTS

We now assess the validity of the calibration techniques
derived above by presenting a detailed experimental com-
parison. Three types of cantilevers are used in this assess-
ment, all of which were procured from Veeco.25 Details of
the geometries and plan view dimensions of all cantilevers
are given in Table II.

The first set consist of one rectangular cantilever and
several V-shaped cantilevers on a single chip. These cantile-
vers have imaging tips and are composed of uncoated Si3N4 .
Measurements were performed on the rectangular cantilever,
R1 , and two V-shaped cantilevers, denotedV1 andV2 .

The second set of cantilevers are micromachined from
single crystal silicon, and consequently have accurately
specified dimensions and material properties.26 Only the
longest rectangular cantilever, denotedR2 , was used, since it

has a torsional resonant frequency below 500 kHz, which is
the highest frequency attainable using our instrumentation.

The third set of cantilevers consist of gold coated Si3N4

rectangular and V-shaped cantilevers on a single chip. The
rectangular cantilever, denotedR3 , and the V-shaped canti-
lever adjacent to it,V3 , were used in experiments to verify
that the calibration techniques are also applicable to cantile-
vers made of composite materials.

Both experimental techniques rely on measurement of
the cantilever resonant frequency. For the normal spring con-
stant, the flexural resonant frequency is required, while for
the torsional spring constant, the torsional resonant fre-
quency must be measured. Using a split quadrant photodiode
detector, which is common in many commercial AFMs, it is
possible to collect the flexural and torsional frequency re-
sponses individually or collectively, as demonstrated in Fig.
4. By selecting the appropriate signals from the detector, it is
easy to distinguish between flexural and torsional resonance
peaks. In addition, combined measurement of the flexural
and torsional signals enables simultaneous calibration of the
normal and torsional spring constants using either technique
described above, provided it is known which peaks corre-
spond to the flexural and torsional resonances.

All measurements were conducted in air, satisfying the
fundamental requirement of both Sader methods that the
quality factors greatly exceed unity. To measure the resonant
frequencyv ~required for the Cleveland and Sader methods!,
and the corresponding quality factorQ ~required for the
Sader methods only!, the thermal noise spectra of the canti-
levers were measured.27 The resonant frequency and quality
factor of the resonance peak were then obtained by fitting
this signal with the response of a simple harmonic oscillator.
To ensure accurate fits, a white noise floor was included in
the fitting procedure.2,30 This approach enabled accurate de-
termination of the resonant frequency and quality factors to
within 60.1% and61%, respectively.

In all cases, the thermal noise spectra were sufficiently
strong that no active excitation of the cantilevers was re-
quired. Nonetheless, to examine the applicability of such ex-
citation, we also drove theR1 cantilever by vibrating its base
using tapping mode cantilever tuning software.31 This in-
duced normal oscillations at the base of the cantilever. In all

FIG. 4. Thermal noise spectra due to flexural vibration only~bottom!, tor-
sional vibration only~middle! and combined spectra~top!. The vertical off-
set is arbitrary and for illustrative purposes only. All plots have identical
logarithmic vertical scales.

TABLE I. Summary of formulas for the Cleveland and Sader methods for
normal spring constantkz and torsional spring constantkf , derived in Sec.
II.

Method Formula

Normal Cleveland
Ms5

kz

vf
2 2me

Torsional Cleveland 28prsr
5

15
5

kf

v t
2 2Je

Normal Sader kz50.1906rb2LQfv f
2G i

f(v f)

Torsional Sader kf50.1592rb4LQtv t
2G i

t(v t)

TABLE II. Cantilever dimensions. Rectangular cantilevers:R1 (Si3N4), R2

~single crystal silicon!, andR3 ~gold coated Si3N4). V-shaped cantilevers:
V1 andV2 ~both Si3N4), andV3 ~gold coated Si3N4). Geometric parameters
are shown in Fig. 2. All measurements were performed using an optical
microscope.

Cantilever
L

~mm!
b

~mm!
d

~mm!

R1 197 19 ¯

R2 422 29 ¯

R3 205 19.5 ¯

V1 323 215 21
V2 219 150 21
V3 317 222 22
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cases, we were able to extract the flexural and torsional reso-
nance peaks using this approach. These measurements
agreed to a high degree of accuracy with those of the thermal
noise spectra for both the resonant frequencies and quality
factors. This behavior is expected, provided the drive ampli-
tudes are not large enough to introduce nonlinearities.

It is interesting that both normal and torsional vibrations
are induced by purely normal excitation at the base of the
cantilever. A possible reason for this is that the plane of the
cantilever is not perfectly level with the horizontal.

A. Comparison of Cleveland and Sader methods

The applicability of the Cleveland and Sader methods to
simultaneous measurement of both the normal and torsional
spring constants is now assessed. For the Cleveland methods,
tungsten spheres of differing diameters were attached to the
free end of the cantilever, with their centers lying on the
major axis of the cantilever.32 A small amount of petroleum
jelly was used to attach the tungsten spheres to the cantile-
vers to allow more accurate reproducible placement. The ad-
dition of petroleum jelly has a negligible effect on measured
resonant frequencies, because its mass is much smaller than
that of the tungsten spheres. No discernible shift in resonant
frequency was observed when the jelly was applied to the
cantilever. The thermal noise spectrum was then measured
for each attached sphere, from which both the flexural and
torsional resonant frequencies were simultaneously deter-
mined. The diameters of the spheres were measured using an
optical microscope~to within accuracy of61%), from
which the massMs and mass moment of inertiaJs of the
applied spheres were then calculated. Figure 5 shows plots of
the added mass and added mass moment of inertia as func-
tions of v f

22 andv t
22 , respectively, for rectangular cantile-

ver R1 . It is strikingly evident that both plots are linear. This
agrees with the theoretical formalism presented in Sec. II,
and allows immediate simultaneous determination of the nor-
mal and torsional spring constants. Analogous results for the
Sader methods are presented in Fig. 6. In contrast to the
Cleveland methods, all that is required in this case is a single
measurement of the thermal noise spectrum, from which
both kz andkf are determined.

In Table III, we present a detailed comparison of these

techniques for the three rectangular cantilevers,R1 , R2 and
R3 . It is clear that good agreement between the Sader and
Cleveland methods is obtained for both the normal and tor-
sional spring constants for all cases. We emphasize that, in
both methods, the torsional and normal spring constants are
obtained simultaneously and independently of each other.
These results demonstrate the validity of these different yet
complementary techniques for the case of rectangular canti-
levers.

In Table III, we also compare the torsional spring con-
stantkf

calc obtained by first measuring the normal spring con-
stantkz , and then applying the following theoretical result
~for rectangular cantilevers!:11

kf5kz

2L2

3~11n!
, ~20!

wheren is the Poisson ratio of the cantilever. This approach
was proposed in Ref. 9. In the absence of a measurement of
the Poisson ratio, a nominal value ofn50.25 was used for
all cases. In this study,kz was obtained using the normal
Cleveland method, although any method for measuring the
normal spring constant can be used. Note that Eq.~20! is
strictly valid for cantilevers composed of isotropic materials
only, whose aspect ratiosL/b are large. For theR1 and R3

cantilevers, which are composed of isotropic materials, the
torsional spring constants obtained in this manner agree well
with those obtained using the torsional Cleveland and tor-
sional Sader methods, with errors,10%. This is expected,
since the Poisson ratio of Si3N4 is known to lie between 0.2
and 0.3.6,33,34Thus, the choice ofn50.25 results in only 5%
uncertainty. The resulting comparison therefore confirms the
validity of both the torsional Cleveland and torsional Sader
methods. For theR2 cantilever, however, the result obtained
using Eq. ~20! differs significantly, with a discrepancy of
more than 20%. This error is due to theR2 cantilever being
composed of a crystalline material, whose elastic properties
depend upon the mode of deformation, whereas Eq.~20! is
derived for an isotropic material.

Results obtained using the Cleveland and Sader methods
for the three V-shaped cantilevers are presented in Table IV.
Again, note the good agreement between these methods, for
both the normal and torsional spring constants. The Cleve-
land methods are implemented in exactly the same manner as
for the rectangular cantilevers. It is important to note that

FIG. 5. Application of Cleveland methods: Torsional~solid line and closed
circles! and normal~dashed line and open circles! for the R1 cantilever.
Straight lines are fits to experimental data~circles!, the slopes of which give
the spring constants. Density of tungsten spheres:r tung519 250 kg m23.

FIG. 6. Application of the Sader methods. Measured thermal noise spec-
trum ~closed circles! fitted with the response of the simple harmonic oscil-
lator ~Ref. 30! ~solid lines! for the R1 cantilever. For clarity, some data
points were removed.
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care must be taken in positioning the spherical masses when
calibrating the torsional spring constants of V-shaped canti-
levers. This is because the strong dependence of the torsional
spring constant of V-shaped cantilevers on lengthwise posi-
tioning of the load18 necessitates that each sphere be placed
in the same position to a high degree of accuracy. This in-
troduces some experimental difficulties into the calibration
procedure. Furthermore, as discussed previously, the spheres
must be attached away from the end of the cantilever if it
comes to a point; see Fig. 2~b!. The V-shaped cantilevers
used in this study,V1 , V2 , andV3 , however, all had their
end-tips trimmed so that they did not meet at a point. Con-
sequently, the spheres could be applied at the end in this
case. We note that the spring constants measured using the
Cleveland methods correspond to those at distanceDL from
the center of the attached sphere to the projected end-tip
point.

The Sader methods were also used to calibrate both the
normal and torsional spring constants of the V-shaped canti-
levers. This was possible because all three V-shaped cantile-
vers have a rectangular cantilever present on the same chip.
Using the methodology presented in Sec. II,kz andkf for the
rectangular cantilever were first measured using the Sader
methods. The normal and torsional spring constants of the
V-shaped cantilever were then obtained from the measured
plan view dimensions of both cantilevers, using the appro-
priate theoretical formulas.17–19 We stress that this approach
is only valid when a rectangular cantilever is present on the
same chip as the V-shaped cantilever in question.

These results, combined with those for the rectangular
cantilevers above, therefore demonstrate the applicability of
the Cleveland and Sader methods in simultaneous measure-
ment of both the normal and torsional spring constants.

B. Torsional Cleveland method: Off-axis loading

We now investigate the applicability of the torsional
Cleveland method for cases where the added masses are at-

tached away from the major axis of the cantilever. Results
obtained by applying the spheres as close as possible to the
side edge of theR1 cantilever are presented in Fig. 7, along
with results for spheres attached along the major axis of the
cantilever. Applying Eq.~9!, which is derived for attachment
on the major axis, leads to a measured torsional spring con-
stant approximately 25% smaller than the corresponding on-
axis value. This behavior is due to the increase in mass mo-
ment of inertiaJs of the sphere with off-axis loading and
coupling of the flexural and torsional modes, which is not
taken into account in Sec. II due to its complexity. Nonethe-
less, since the spheres are attached at the maximum distance
from the major axis (;9 mm away!, these results represent
the worst case scenario. As such, the error in measured tor-
sional spring constant due to off-axis application of the
spheres will be smaller for cases where the spheres are po-
sitioned closer to the major axis of the cantilever, as demon-
strated above. In contrast to this finding, we remind the
reader that the normal Cleveland method is insensitive to
off-axis loading of the spheres.16

C. Sader methods: Effect of added mass

In practice, many AFM measurements are performed
with a colloidal probe attached to the free end of the canti-
lever. Consequently, here in Sec. III C we investigate the
effect of such added mass on the accuracy and validity of the
Sader methods. Rectangular cantilevers only are considered,
since the Sader methods are primarily applicable to these
cantilevers. Results of this investigation using theR1 canti-
lever for both the normal and torsional Sader methods are
presented in Tables V and VI, respectively.

To begin, we consider the normal Sader method. Appli-
cation of a mass to the free end of the cantilever, while not
affecting its normal spring constant, will result in a decrease

FIG. 7. Effect of off-axis loading on measuredkf of theR1 cantilever using
the torsional Cleveland method. On-axis loading~closed circles!; off-axis
loading ~open circles!. The off-axis distance;9 mm.

TABLE III. Rectangular cantilevers. Comparison of spring constants determined by the Sader methods~superscript Sader!; Cleveland methods~superscript
Clev!; and Eq.~20! ~superscript calc!. f andQ are the resonant frequency and quality factor, respectively. Subscriptsf and t refer to flexural and torsional
cases, respectively. Measurements were performed in air:r51.18 kg m23 andh51.8631025 kg m21 s21.

Cantilever
f f

~kHz! Qf

f t

~kHz! Qt

kz
Sader

(N m21)
kf

Sader

(10210 N m)
kz

Clev

(N m21)
kf

Clev

(10210 N m)
kf

calc

(10210 N m)

R1 18.78 17.2 393.4 104 0.020 4.3 0.020 4.5 4.1
R2 10.12 25.4 258.3 167 0.037 26 0.037 28 35
R3 15.39 20.9 314.5 123 0.020 4.2 0.020 4.1 4.5

TABLE IV. V-shaped cantilevers. Comparison of spring constants deter-
mined by the Cleveland methods~superscript Clev!; and the Sader methods
~superscript Sader!. Spring constants evaluated a distanceDL from the end
tip projected to a point. The Sader methods were implemented by first cali-
brating a rectangular cantilever and then applying the formulas in Refs. 18,
17, and 19.

Cantilever
DL

~mm!
kz

Clev

(N m21)
kf

Clev

(10210 N m)
kz

Sader

(N m21)
kf

Sader

(10210 N m)

V1 35 0.013 6.8 0.013 6.6
V2 20 0.037 8.7 0.038 8.7
V3 31 0.014 6.4 0.014 6.1
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in resonant frequencyv f and an increase in quality factor
Qf . A decrease inv f , however, leads to an increase in the
imaginary component of the hydrodynamic functionG i

f(v f);
see Fig. 1 of Ref. 2. These increases inQf andG i

f(v f) do not
quite balance the decrease inv f

2 in Eq. ~13!. Consequently,
the measured normal spring constant is smaller when a mass
is attached to the free end of the cantilever than the result
obtained for an unloaded cantilever~the actual value!. This is
evident in Table V, where it is clear that, as the diameter of
the spheres increases, the normal spring constant measured
using the normal Sader method decreases. These results in-
dicate that the size of the sphere, and not its mass, is prima-
rily responsible for the decrease in measured normal spring
constant. For example, tungsten and silica spheres of the
same size result in a similar decrease in measured normal
spring constant, although the heavier tungsten spheres
slightly enhance this decrease. These results suggest that the
contributing error in the normal Sader method is less than
10% for a cantilever with an attached spherical mass, pro-
vided the sphere diameter is less than approximately half the
width of the cantilever.

Next, we consider the effect of an attached spherical
mass on the accuracy of the torsional Sader method. As dem-
onstrated in Table VI, the torsional spring constant obtained

with a silica sphere attached to the major axis of the cantile-
ver at its free end differs significantly from the value ob-
tained for the unloaded cantilever. As the sphere gets larger,
this difference increases. Similar results are obtained for
tungsten masses. While the resonant frequency of torsional
vibration decreases as the diameter of the sphere increases,
the quality factor is seen to have no particular trend, which is
nonsensical. This is most likely due to the nonrigid bond
between the sphere and the cantilever, which is probed by the
twisting motion of the cantilever. This undesirable property
is not present in the normal Sader method, since flexural
deflection of the cantilever does not probe this nonrigid
bond.

These results indicate that the normal Sader method is
capable of providing an accurate measurement when a sphere
is attached to the free end of the cantilever. However, this is
not true for the torsional Sader method, in which spurious
measurements can result.

We have presented extensions of both the normal Cleve-
land and normal Sader methods to enable calibration of the
torsional spring constants of AFM cantilevers. These exten-
sions, referred to as the torsional Cleveland and torsional
Sader methods, respectively, allow direct experimental deter-
mination of the torsional spring constants of AFM cantile-
vers, and show good agreement for both rectangular and
V-shaped cantilevers. Since these torsional extensions utilize
an experimental setup identical to that of their normal spring
constant counterparts, they enable direct and simultaneous
calibration of both normal and torsional spring constants of
AFM cantilevers.

In order to assist in implementation of the Sader and
torsional Sader methods, the authors have made available
an online calibration program, located at http://
www.ampc.ms.unimelb.edu.au/afm. Also available at that
address are Mathematica files which calculate the spring con-
stants using the aforementioned techniques.
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